

Leveraging MoldJet Technology For Industrial Applications

AM Tech Conference, Dec. 24, Tel-Aviv

Ohad Dolev

Tritone fundamentals

Founded in Israel (2017) and developed Systems & Materials for the **MoldJet** process

---• Sinter-based **metal & ceramic** AM

Industrial compatibility:
throughput, repeatability, safety, operability, low-labor

---• Unique Inkjet-based forming process

Innovation in Materials; Slurry-based

'paste' feedstock
No powder

Global presence

MoldJet Video

Slurry-based 'Paste' Feedstock

MoldJet Materials – List and Status

Family	Туре	Status
Stainless Steel	316L	Released
	17-4PH	Released
	15-5PH	Released
	420	Beta
Tool Steel	H13	Released
	M2	Released
Low Alloy Steel	4340	Released
	4140	Beta
Super Alloys	Inconel 718	Beta
Titanium	6-4	Released
Copper based	Pure Copper	Beta
Ceramic	Alumina	Beta

Implication of 'Paste' Feedstock

Powder Free process!

- ANY sinterable materials are applicable
- Proven Feasibility study: In713, Mo, Ta, NiTi, Au, Ag, SiC, ZrO₂, WC, Zirconium..

Uniform material distribution:

- Isotropic behavior
- Low Shrinkage

High 'Green' strength!

Luxury & Fashion

Images for illustration purposes only

Luxury & Fashion

The Case Study:

• Manufacture of 2,000 metal pairs of luxury heels.

from purchase to production in 5-months

- Delicate & complex design
- Delivery in 5 months.

Images for illustration purposes only

This document is Tritone intellectual property; any copy is strictly prohibited

Luxury & Fashion

MoldJet Success factors:

- 1. Precious metals compatibility!
- 2. Excellent feature resolution
- 3. Superior material properties!
- 4. Any shape, No support!
- 5. Paste deposition as required per part

The Case Study:

- The Product: topology-optimized heatsink
- Qualifying Moldjet Technology for A&D line of products
- Certifying ANT as a Tier 2 manufacturer
- Multiple configurations & high production rate

ritone

MoldJet Success factors:

- OPEN TUBES! → Small ø, Long 3D route
- Thin walls, high pressure
- Excellent Thermal conductivity
- No photopolymers \rightarrow No Carbon leftovers
- High green strength \rightarrow high yield!

Moldjet Vs. Competitors:

Won this competition against Binderjet and DLP technologies:

- > Successfully handled the geometrical challenges
- > Best productivity
- > Best cost per part

Aerospace & Defense – Opportunities

The Case Study:

- The Product: Lightweight Silicone-Carbide (SiC) Mirror
- Manufacturing of Lightweight SiC Mirrors by Moldjet Technology:
 - > Fast steering Mirror
 - > Laser Mirror
 - > Low CTE Mirror
- High density SIC

SiC Green Parts

Tooling & Molding

Tooling & Molding

The challenge:

- Qualifying Moldjet Technology by tooling OEM
- Lathe tool-holder, with internal coolant tubes and integrated gripping flexture.
- low-alloy steel and tool-steel.
- <u>Manufacturing rate</u>: Over 1,000 Parts/Week.

Moldjet Vs. Competitors:

- Won this competition against currently-used LPBF technology!
 - > Best cost per part.
 - > X5 higher productivity Vs LPBF.

Tooling & Molding

Moldjet Success factors:

- Highest productivity
- Long 3D route tubes
- Improved coolant flow rate
- Thin walls

l

Good dynamic loading properties

Tooling & Molding – Opportunities

Medical Devices

Medical Devices

The Case study:

- Qualifying Moldjet technology by a surgical tools OEM
- Manufacturing of a lightweight assembly of minimalinvasive medical device.
- Manufacturing rate: 500 sets per week.

Medical – Surgical Tool Benchmark

Analysis

- Material: 17-4PH
- Manufacturing time per job cycle:
- 6[trays] * 90 [sets/tray] = 540 [sets/job]
- Batch manufacturing time: 72.9 hours
- Average time per set : 8m

Medical Biocompatibility

Medical

Biocompatible Study

Seeded bone cells on Ti-6Al4V and 316L Moldjet lattice specimens.

✓ Biocompatibility proved!

Courtesies to Galit Katarivas Levy, Ph.D. - Senior Lecturer Head, Biomaterials & 3D-printing Laboratory (GKLab)

8 mm

And Mr. Shlomi Digorker MSc Student

Dept. of Biomedical Engineering, Faculty of Engineering Sciences Ben-Gurion University of the Negev

MoldJet's Technology Benefits

- 1. Open system allows your own materials development
- 2. Simple, safe & easy materials changeover
- 3. Integrated in-process QA and corrective capabilities
- 4. High density and repeatability
- 5. No geometrical constrains

Share your application challenge

Ohad Dolev

ohadd@tritoneam.com

www.tritoneAM.com