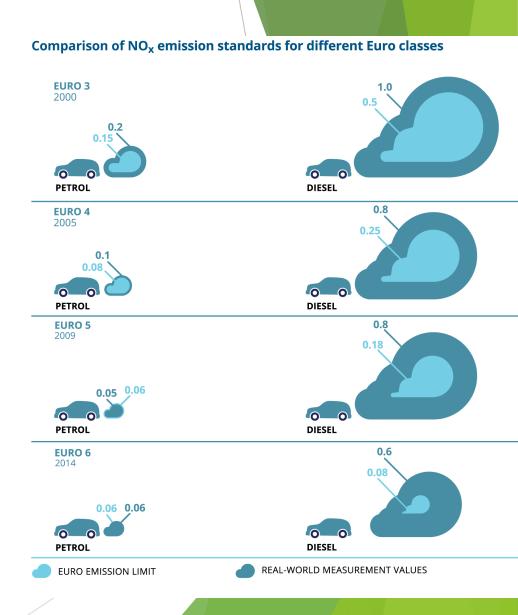
Bio-fuels, e-fuels and their role in the future energy mix

Guy Ben-Haim, MSc. CTO Dor Motors

AEAI Propulsion Systems Conference, Febuary 21st 2024

What we see in the press


- "The EU plans to ban sales of new ICE powered vehicles in 2035"
- "Britain, Israel and Singapore plan to ban the sales of new vehicles with IC engines in 2030"
- "Internal combustion engines are hindering the clean energy future"

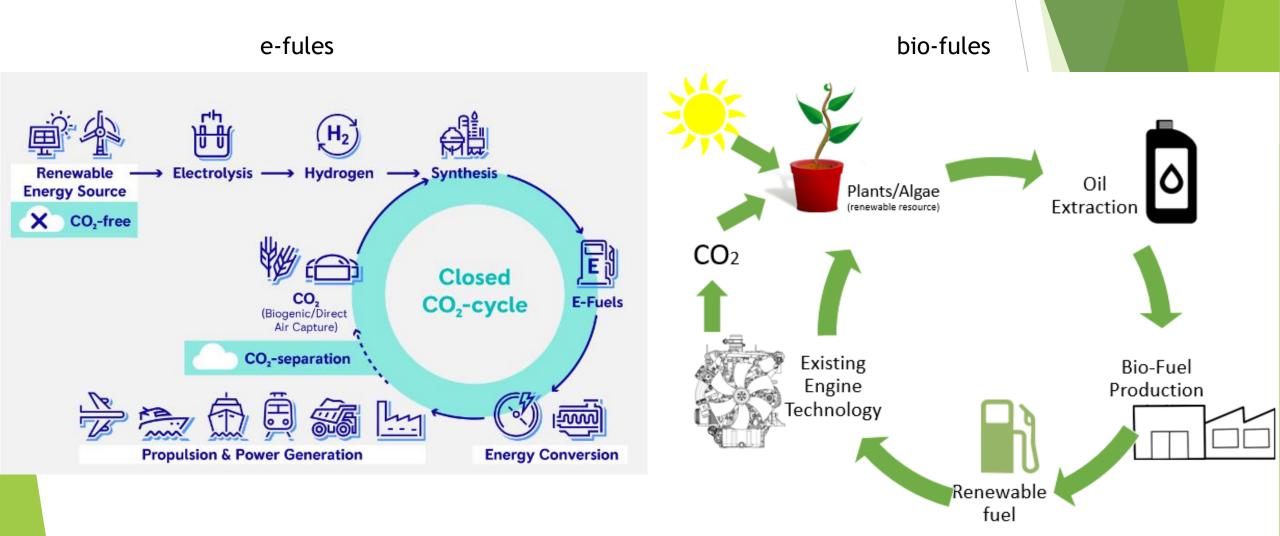
It's not the engine, it's the fuel

- Harmful ICE emissions have been considerably reduced
 - Vast improvements in after treatment technologies
 - Global regulation became stricter and will continue to
- CO2 emissions are a result of the fuel used and not a inherent to engine technology
 - C8H18 + 12.5 O2 → 8 CO2 + 9H2O
 - $\blacktriangleright CH3OH + 1.5 O2 \rightarrow CO2 + 2H2O$
 - $\blacktriangleright H2 + 0.5 O2 \rightarrow H2O$
- Carbon emissions can be reduced by:
 - using fuels with less carbon or no carbon
 - Producing synthetic fules with use of carbon originating from waste or the atmosphere

Alternative fuels driving decarbonization

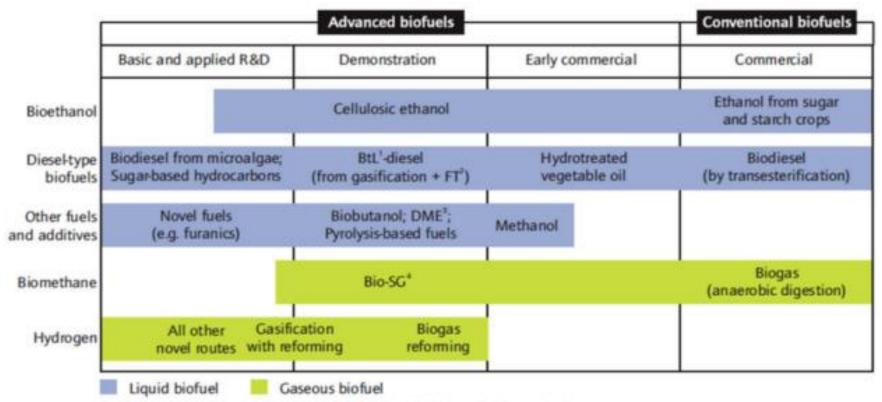
- Reduction in carbon emissions can begin right now
 - Effective for the existing ICE based transportation fleet
 - Using the existing distribution, re-fueling and storage infrastructure
 - Effective for sectors where an ICE will continue to be dominant (shipping, aircraft, off-grid power generation etc.
 - Effective for other types of fuel burning machines (industrial steam boilers etc.)
- "Drop in" capability with existing engines
 - little to no changes required (depending on fuel)
 - Possibility for blending with existing fuels(E5, E10 etc.)
 - Flexible fueling for the same machine (eg. E85/gasoline flex fuel system)
- Energy storage for the future distributed renewable energy system
 - Power to Gas/ Power to Liquid
 - Better than other storage methods in energy densty and storage capacity

Combustion of hydrogen in ICE


- Hydrogen has many advantages as a fuel for ICE
 - Very wide flammability limits
 - > The engine is able to operate at ultra-lean conditions
 - No carbon emissions directly from fuel
 - > The most common element in nature
 - ► Has a well established production method
 - ▶ Renewable energy can be used to produce it
- This however, comes with several challenges:
 - Low energy density as a gas (at room temperature)
 - ▶ High pressure compression and liquification possible but complex
 - > 700 BAR tanks have been developed for various applications
 - liquid hydrogen tanks (at -253°C) have also been developed and are under testing
 - ▶ Both methods suffer from leakage issues and are energy intensive
 - Increase in NOx emissions
 - Effect of hydrogen embrittlement on engine materials lifetime
 - Re-fueling infrastructure is currently not wide spread
 - Saftey considerations
 - Very easily ignitable during unplanned leakage
 - Failiure of High pressure or very low temperature storage devices

Combustion of hydrogen in ICE

Currently in the R&D phase, with Toyota leading the effort for ICE and fuel cell vehicles


The Closed CO2 cycle of the two liquid fuel alternatives

Bio fuels

- Bio fuels can be made from various plant-based materials
 - Straw, manure, wood waste, sugarcane, waste vegetable oils etc.
- production methods are divided to generations:
 - First generation Bio-fules
 - Firmentation of simple sugars (e.g. ethanol sugar cane)
 - transesterification of vegetable oils and animal fats (e.g. alkyl ester "biodiesel" from vegetable oil)
 - second generation Bio-fules
 - Thermochemical conversion of carbon based materials (e.g. organic waste gasification to produce syngas. The syngas can be turned into various fuels via a fischer-Tropsch process)
 - Biochemical conversion through enzymatic-hydrolysis of cellulose resulting in sugars fermrnted into alcohol (using plant based waste)
 - Third generation bio-fuels
 - > Derived from algae that produce an oil that can be easily refined into diesel
 - > The algae can also be genetically manipulated to produce other types of fuels

Bio fuels, continued

1. Biomass-to-liquids; 2. Fischer-Tropsch; 3. Dimethylether, 4. Bio-synthetic gas.

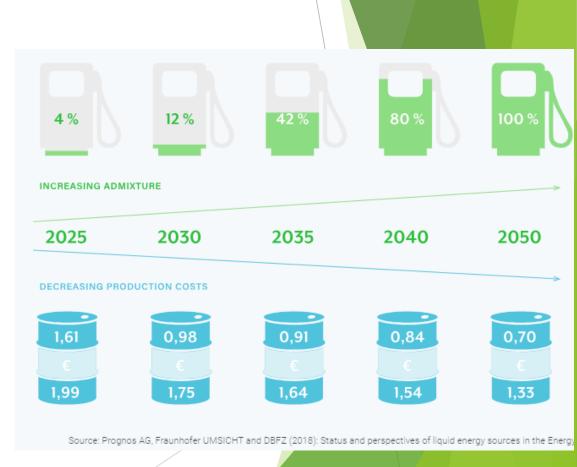
Bio fuels, continued

- The most common bio fuels in use are ethanol (for SI engines) and biodiesel (for CI engines)
- These fuels are suitable for use in current engines with little modification
 - Changes to the fuel supply system for correct flow and resistance to corrosion
 - In cold climates cold start aids need to be installed (glow plugs etc.)
- Blends are being used with no modification to hardware
 - ▶ E5 and E10
 - ► B20
- The trend is to move away from bio fuels made from growing crops on land and focus on more renewable and energy efficient sources (waste, algae).

e-fuels

- e-fuels (power-to-liquid) are considered the "fourth generation" bio-fuel
- Production:
 - Electrolysis of water to produce Hydrogen
 - Seperation of CO2 from the atmosphere or other sources (water, biomass, flue gas)
 - Chemical synthesis of the desired fuel
 - ▶ the process can be carbon-free if renewable or excess energy is used
- Many types of fuels can be synthesized:
 - e-methanol, e-methane, dimethyl ether (E-DME), e-ammonia, e-diesel...
- The ones considered most energy efficient
 - e-Methanol (typically for SI engines)
 - e-DME (typically for CI engines)
- P-to-L can also be used to store off-peak excess energy with high density

e-fuels


	Theoretical Conversion Efficiency from Hydrogen	Typical Plant Conversion Efficiency from Hydrogen	Thermophysical Conversion for Storage [kWh/kg]	Typical Overall PtX Efficiency	E-Fuel Transportation to Final User [kWh/kWh _{fuel}]	WTT Efficiency
E-Hydrogen (700 bar)	-	-	5.5	0.60	0.09	0.55
E-Hydrogen (liquid)	-	-	11	0.54	0.1	0.49
E-Methanol	0.886	0.797	-	0.53	0.07	0.49
E-Diesel	0.834	0.693	-	0.46	0.05	0.44
E-Ammonia	0.870	0.783	-	0.52	0.07	0.48
E-DME	0.915	0.824	-	0.55	0.07	0.51
E-Methane (220 bar)	0.825	0.743	0.15	0.50	0.07	0.47
E-Methane (liquid)	0.825	0.743	0.5	0.49	0.07	0.46

e-fuels, continued

- ▶ e-Methanol $CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$
 - Can be easily used in SI engines
 - ▶ High RON, high HOV, high flame speed, high energy per unit of fuel-air mixture
 - Energy density ~1/2 of gasoline
 - ▶ To produce 1 kg of methanol, 1.37 kg of CO2 and 0.19 kg of H2 are required.
 - Other possibilities in ICE
 - On-board reforming to hydrogen using exhaust gas heat
 - Dual-fuel operation of CI engines with variable energy substitution rates
- e-DME $_{2CO+4H_2} \rightarrow CH_3OCH_3 + H_2O$
 - The carbon source for production is CO, converted from CO2. can also be produced from methanol
 - A suitable fuel for CI engines
 - high cetane number, low ignition temperature, and high speed of vaporisation
 - Energy density ~60% of diesel
 - No C-to-C bonds- large reduction in particulate emissions (negating DPF)
 - Currently in the research stage

Challenges to e-fuel adoption

- Energy requirements of current technology
 - Electricity consumption, only for the reactants needed to synthesize 1 kg of e-methanol, is about 10 kWh for H2 and up to 2 kWh for CO2
 - Hurts WTT efficiency
- Avaliability of "green energy"
 - Relying only on excess energy will limit production capability
- The price
 - Current offerings (Porsche) cost 10 euro/liter- X5 of gasoline
 - Price is expected to decrease with larger scale production
 - The regulatory environment
 - EU delayed LDV ICE ban, but the politics are still in favor
 - Government incentives could speed up adoption

Dor Group Methanol initiatives

- During the last decade, DOR Group (Via its innovation arm Dor-Motors) has put forward an intensive R&D effort to expand the use methanol as a clean, competitive alternative fuel. Among the developments:
 - Internal Combustion Engine conversions to operate with Methanol
 - (M100 engine technology)
 - Development and Production of Low-Carbon Methanol based fuel ("DOR-Mix")
 - reducing up to 15% CO2 emissions compared to diesel.
 - Launched the first in the world Medium Duty Vehicle operated with Methanol
 - Design of a conversion KIT upgrading existing diesel gensets for hybrid methanol
 diesel use.
- Replacing diesel fuel with alcohols in relevant applications has both environmental and economical benefit:
 - Reduction (dual fuel) or elimination of particle emissions (soot)
 - Reduction in NOx emissions
 - e-fuels
 - Diesel fuel is subject to high tax policies that are expected to continue increasing

Dor Motors

DOR MOTORS

- Dor-Motors current initiatives are:
 - Diesel genset dual-fuel conversion kits:
 - Self-tuning ability for various fuels (Methanol, Ethanol, Hydrogen etc.)
 - Implementation at customer sites (Ashdod port, etc.)
 - M100 genset conversions offered to customers via "energy as a service"
 - Conversions of oil burners for direct combustion of alternative fuels and fuel blends
 - Hydrogen energy initiatives
 - Production and storage methods
 - Fueling infrastructure and usage in HFC industrial vehicles (forklifts, trucks etc)
- Looking for collaboration with interested parties

References

- https://www.mtu-solutions.com/cn/zh/stories/technology/e-fuels-powering-a-climate-neutralfuture.html
- https://www.eea.europa.eu/media/infographics/comparison-of-nox-emission-standards
- Jurchiş, B & Burnete, N & Burnete, Nicolae & Iclodean, Calin. (2018). Particulate matter emission characteristics for a compression ignition engine fueled with a blend of biodiesel and diesel. IOP Conference Series: Materials Science and Engineering. 444. 072012. 10.1088/1757-899X/444/7/072012.
- https://www.researchgate.net/publication/329301232_Particulate_matter_emission_characteristics for_a_compression_ignition_engine_fueled_with_a_blend_of_biodiesel_and_diesel
- https://commons.wikimedia.org/wiki/File:TOYOTA_Corolla_Cross_with_hydrogen_engine.jpg
- Costa Michela, Piazzullo Daniele. Biofuel Powering of Internal Combustion Engines: Production Routes, Effect on Performance and CFD Modeling of Combustion. Frontiers in Mechanical Engineering https://www.frontiersin.org/articles/10.3389/fmech.2018.00009
- Pasini, G.; Lutzemberger, G.; Ferrari, L. Renewable Electricity for Decarbonisation of Road Transport: Batteries or E-Fuels? Batteries 2023, 9, 135. <u>https://doi.org/10.3390/batteries9020135</u> https://mdpi.com/2313-0105/9/2/135

Questions?