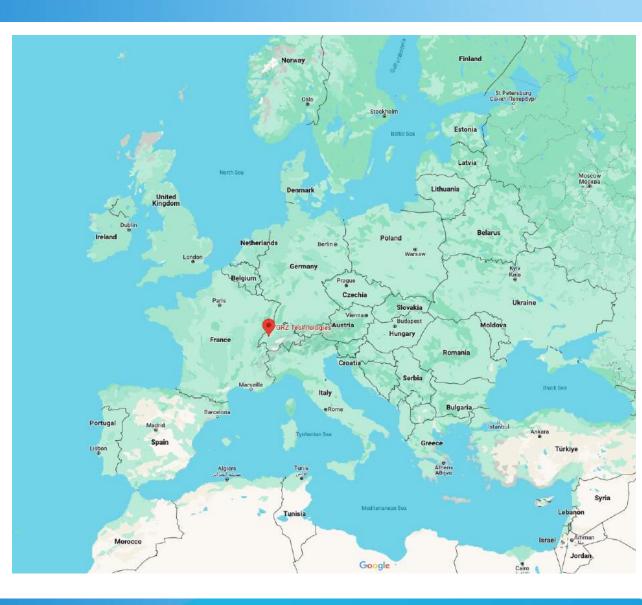
GRZ TechnologiesSTS Sales, Technology & Services Ltd.

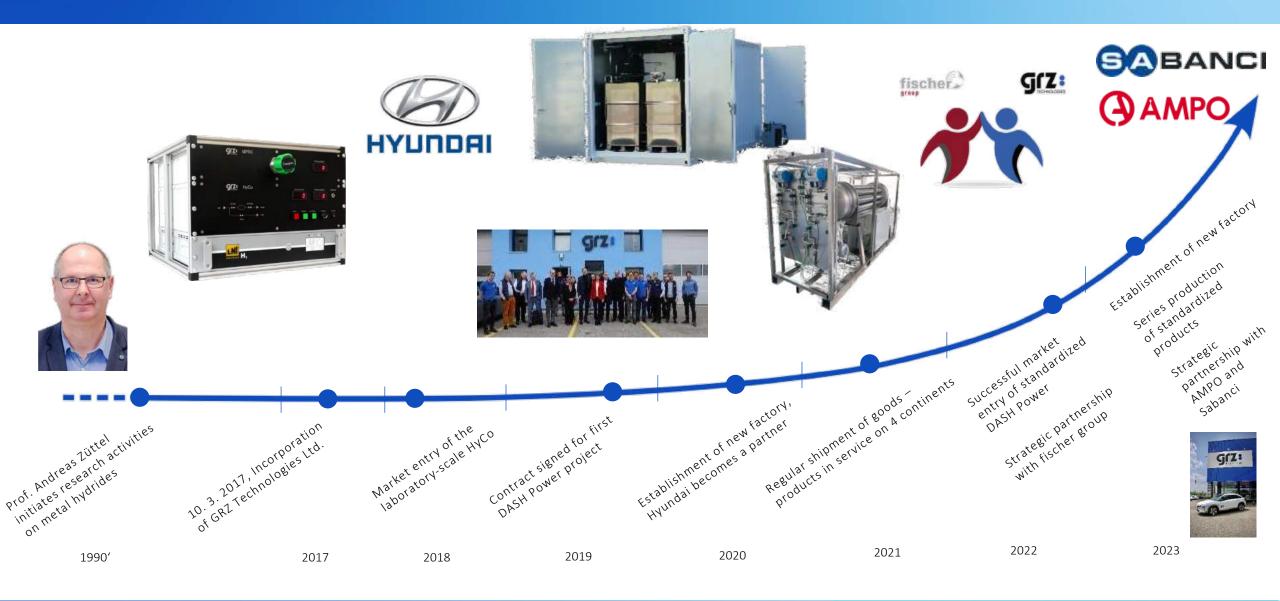
January 24

S.T.S – Sales, Technology & Services Ltd.



Surckhardt Compression	Reciprocating Compressorsd	World Leading OEM	Swiss Company
De Pretto Industrie	Steam Turbines Rotating Equipment	OEM and Service Providere	Italian Company
	Sulzer Pumps	Centrifugal pumps	Finish Company
SULZER	Sulzer Chemtech	Licensing, Engineering and Hardware for the chemical industry	Swiss Company (HQ)
GIZ: TECHNOLOGIES	H2 Storage	Metal Hydrates Storage and Complete containarized solutions	Swiss Company

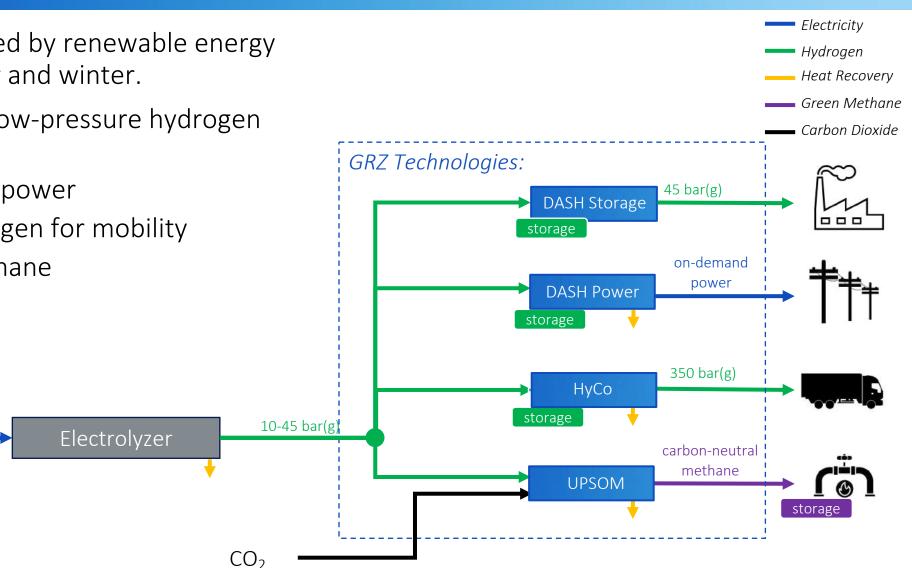
Management and Senior Organization Members



- GRZ was founded In 2017 by Noris Gallandat, Claudio Ruch and Prof. Andreas Züttel (EPFL).
- GRZ and STS cooperation began late 2021.
- GRZ Technologies SA is a Swiss Company Avenches, Switzerland

Company Development

Grz:



GRZ Technologies

- Our vision is a world fueled by renewable energy

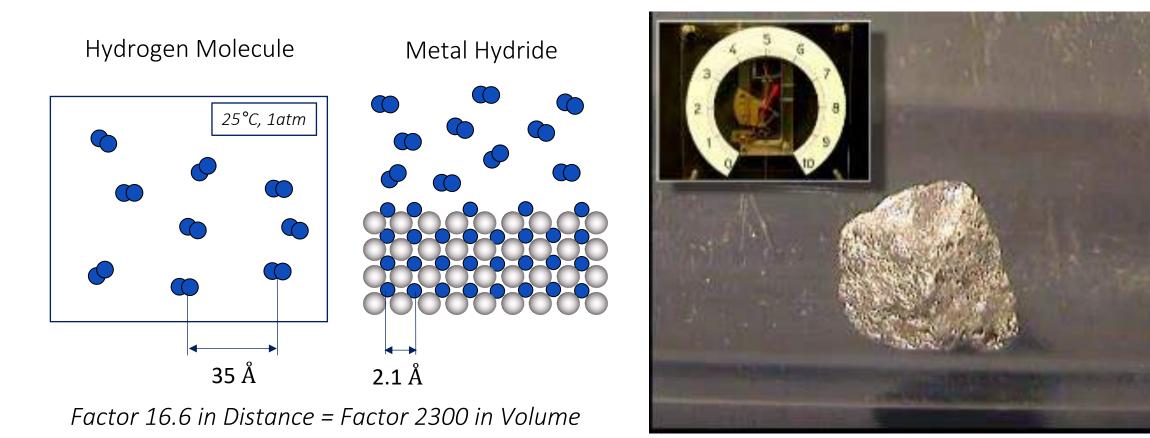
 day and night, summer and winter.
- Our products transform low-pressure hydrogen into lasting value:
 - o On-demand electric power
 - High-pressure hydrogen for mobility
 - o Carbon-neutral methane

nananana

DOOY*wwwww*WOOM

*ha*aaaa X**aaa**aaa

Forms of Hydrogen Storage



Pressurized (≈35 bar)	Pressurized (>200 bar)	Liquid	Solid state
	Provide a state of the state of		SOLID-STATE H, STORAGE
 <u>Advantages:</u> No compression required Widely available Moderate pressures 	 <u>Advantages:</u> Good volumetric density at high pressures (700 bar) 	 <u>Advantages:</u> High volumetric density Scalability 	 <u>Advantages:</u> Very high volumetric density Excellent safety characteristics No compressor required No energy losses due to compression /liquefaction
 <u>Disadvantages:</u> Large volume Not entire capacity usable Safety-related limitations 	 <u>Disadvantages:</u> Energy losses due to compression Safety concerns Compressor required Not entire capacity usable 	 <u>Disadvantages:</u> Energy losses due to liquefaction Technical complexity: boil-off, constant cooling, Safety-related limitations 	<u>Disadvantages:</u> Lower gravimetric density

Confidential for internal use only Use outside of GRZ Technologies only with confidentiality obligation Refer to protection notice ISO 16016

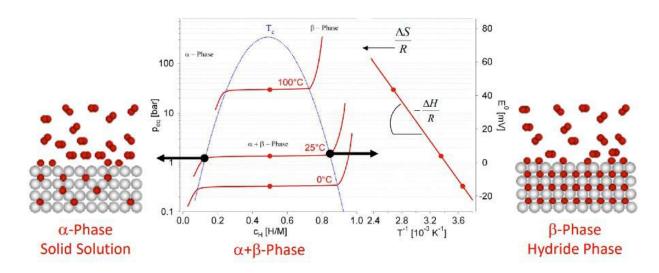
Solid-State Hydrogen Storages (Metal Hydrides)

Ph. Mauron, M. Bielmann, A. Züttel EMPA, Switzerland

Hydrogen molecules are dissociated in hydrogen atoms, which are absorbed into a specific metallic material under favorable conditions. The hydrogen atoms occupy the interstitial sites of the metallic lattice, which enables a high volumetric density.

Metal Hydrides for Hydrogen Storage

Hydrogen (=Energy) Storage


- Very high volumetric density
- Excellent safety properties
- Long lifetime, no degradation
- High round-trip efficiency
- Density correspond to compressed hydrogen at 1000 bar(g)
- Flow rates can be controlled with temperature

Thermal Behavior

When storing hydrogen in metal hydrides, the thermal behavior of the system is of great importance.

This is due to the basic physical properties of the compounds:

- The pressure in the system largely depends on the temperature. The relation between these variables is non-linear.
- When H2 is absorbed by a DASH storage, heat is released. It is therefore an exothermic process.
- Conversely, the removal of hydrogen is an endothermic process. Therefore, heat is required to desorb hydrogen from a storage.

Thermal Behavior (II)

 storage module from which the hydrogen was removed with a very high flow rate causing it to freeze and exemplifies the process described above.

System Design and Manufacturing

- GRZ Technologies builds metal hydride storage modules according to a patented design on its production lines in Switzerland.
- The basic component of each storage module is the application-specific and optimized hydrogen carrier material.
- The storage material is then inserted into optimized stainless-steel containers (e.g., made of AISI 304L 3.1).
- The smallest unit in the modular design used for this is the cell.

Any dissemination only with the express approval of the originator

Jan-24

We manufacture equipment which is CE-conform with respect to the following directives:

- ATEX-Directive 2014/34/EU
- Machinery Directive 2006/42 / EC
- Pressure Equipment Directive 2014/68 / EU
- Electromagnetic Compatibility Directive 2014/30 / EU
- Low Voltage Directive 2014/35/EU
- Electrolyzers/Hydrogen ISO 22734:2019

DASH M-series Solid State Hydrogen Storage Modules

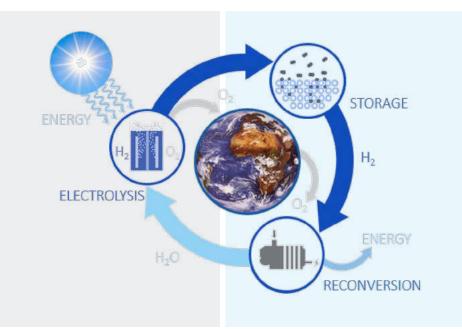
- Metal hydrides in optimized stainless steel pressure vessels
- 2 standard modules (M3 and M45)

DASH Storage	Unit	M3	M45	
Storage capacity per module	kg _{H2}	3	45	
Maximum charge flow (at 20°C)	kg _{H2} /h	0.08	1.2	
Maximum discharge flow (at 20°C)	kg _{H2} /h	0.08	1.2	
Outer dimensions (L x W x H)	mm	1051 x 651 x 217	2000 x 1090 x 680	
Weight	kg	250	3'915	
ATEX		None		
Preferred hydrogen charge pressure	bar(g)	30 to 45		
Hydrogen discharge pressure	bar(g)	1 to 45		
Hydrogen supply purity	%	99.995		
Outlet H_2 purity	%	99.995		
External cooling requirements		None		
Admissible ambient temperature	°C	-5 to 40		
Expected service life	years	> 30		

- Can be combined to build several tons of storage capacity
- Can be submerged in liquid for quick thermal management for integration in bigger projects, and increase in flow rates

DASH C-series Solid State Hydrogen Storage Containerized

- Metal hydrides in optimized stainless steel pressure vessels integrated in a container, that can be stacked
- Plug & play modules with thermal management for rapid charge / discharge
- From 45 kg. to several tons.


DASH Storage	Unit	C45	C90	C135	C180
Storage capacity	kg _{H2}	45	90	135	180
Maximum charge flow	kg _{H2} /h	2	4	8	8
Maximum discharge flow	kg _{H2} /h	2	4	8	8
Preferred hydrogen charge pressure	bar(g)	30 to 45			
Hydrogen discharge pressure	bar(g)	1 to 45			
Required H_2 purity	%	99.995			
Outlet H_2 purity	%	99.995			-
Dimensions	container	10ft	10 ft	20ft	20ft
Weight	tons	5.8	9.4	14.0	17.5
Noise	dB(A)	<70			
Electrical interface input	V AC	230 400 3-phase		e	
Ambient temperature	°C	-10 to 45			
Expected service life	Years	> 30			

DASH Power (I)

Standardized Electrolysis Units or delivered hydrogen via truck or pipeline – all depending on application

DASH Power

DASH Power (II)

DASH Power Systems:

- On-demand power where you need it: integrated automotive-grade fuel cell system (up to 500 kW_{el} per module)
- Think MWh not kWh: up to 4.5 MWh_{el} of electrical energy on a very small footprint.
- Forget cycle limitations and capacity degradation: fully reversible process without cycle limitations or degradation.
- Safety without compromises: our proven and patented solid-state hydrogen storage technology leads to excellent safety properties allowing for the installation in almost any environment, even indoors.
- Environmentally friendly energy storage: greatly reduced environmental footprint and long lifetime
- **Easy integration:** compact design in 20ft ISO -containers

DASH	175-900	260-1800	400-2700	500-3500	500-4500
Electrical power (Peak, kW _e)	175	260	400	500	500
Electrical power (Cont., kW _e)	75	160	240	320	320
Storage capacity (kg _{H2})	45	90	135	175	225
Total storage capacity (MWh _e)	0.9	1.8	2.7	3.5	4.5
Time to discharge at 100% load (h)	12.0	11.3	11.3	10.9	14.0
Electrical interface output	3-phase 400 V 50/60 Hz				
Communication interface	TCP/IP OPC UA and hardwired				
Ambient temperature (°C)	-10 to +38 (without degradation)				
Noise	< 59 dB(A) at 10 meters distance				
Hydrogen supply purity			.5 (> 99.995 %)		
Hydrogen supply pressure (bar(g))	30 - 45				
Nominal power output (kWh/kg _{H2})		20			
Max. fuel cell efficiency (%)	62				
Max. efficiency (incl. waste heat, %)	84				
Dynamic operation	10-90% in 1s during operation				

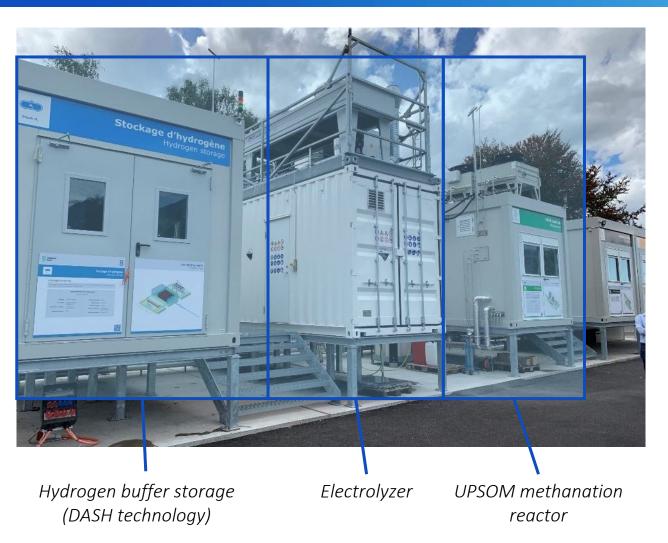
HyCo - Metal Hydrides for Hydrogen Compression

Hydrogen Compression

- Combined storage / compression units
- Thermally powered compression
- Silent, vibration-less, without leakage, and with minimal maintenance
- Many years experience with laboratory compressor deliveries delivered in 4 continents


UPSOM – Methanation Reactor

- A new methanation technology with improved efficiency and reduced costs.
- Directly convert CO₂ and H₂ into synthetic methane using the Sabatier process


 $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$

- Synthetic methane is a 100% carbon-neutral replacement for fossil natural gas
- Over 99% conversion in a single stage thanks to novel catalyst and innovative reactor design
- Small scale system has been operational for 3 years
- Applications:
 - 1. Upgrade of raw biogas
 - 2. Use of CO_2 from flue gases
 - 3. Storage of excess energy in synthetic methane

UPSOM – Methanation Reactor

Parameters	UPSOM-500	UPSOM-1000		
Methane production (CH_4)	3.2 – 16.2 kg _{CH4} /h	7.4 – 37.5 kg _{CH4} /h		
Hydrogen consumption (H_2)	1.6 – 8.1 kg _{H2} /h	3.7 – 18.75 kg _{H2} /h		
Carbon dioxide	8.9–44.4 kg _{co2} /h	20.6 – 102.7 kg _{co2} /h		
consumption (CO ₂)				
Power (Eq. CH ₄ HHV)	45 – 225 kW	104 – 520 kW		
Input pressure of H_2 and	10 h	ar(a)		
CO ₂ and operating pressure	10 bar(g)			
Average operating	250°C			
temperature	250 C			
Product shape	20ft-ISO Container			
Weight of complete	9'800 kg	14'800 kg		
containerized solution	9 000 kg	14 000 Kg		
Electrical power supply	32 A / 400V 3P	32 A / 400V 3P		
Standby power	500 W			
consumption	500 W			
Dynamic operation	0% – 100% - 0% in seconds			
Start-up time from cold	15-30 minutes			
Compliance	ATEX Directive 2014/34/EU			
	PED Directive 2014/68/EU			
	LVD Directive 2014/35/EU			

For Further Information

Ori Ravin +972(0)54.5998469 oriravin@sts-ltd.co.il

Newsletter

Thank you for your attention

Contact: sales@grz-technologies.com +41 26 475 20 11