Microstructure Stability During Creep of Friction Stir Welded AA2024-T3 Aluminum Alloy

M. Regev

Department of Mechanical Engineering, ORT Braude College, P.O. Box 78, Karmiel 21982, Israel

S. Spigarelli

Dipartimento di Meccanica, Università Politecnica delle Marche, 60131-Ancona, Italy

Outline

- The FSW process
- Experimental procedure
- Results (optical metallography, SEM, TEM, EDS)
- Discussion
- Conclusions

The advantages of FSW

- No filler
- The welding tool lasts for ~ 1000 m
- Minimum preparation
- About 20% heat input compared with TIG
- No fusion/solidification defects
- Dissimilar weldings, unweldable alloys, composites

The FSW process

Experimental Procedure

 Material – 3.175mm thick 200x100mm plates of commercial AA2024-T3 alloy

Element	Cu	Mg	Mn	Fe, Si	Ti	Zn	Al
Content (wt%)	3.8-4.9	1.2-1.8	0.3-0.9	Max 0.5	Max 0.15	Max 0.25	Bal.

• An H-13 welding tool

Assesment stage:

- Visual inspection
- Optical microscopy of X-sections
- Radiography

<u>Selected welding parameters</u>:

Rotational speed of 800 rpm and a transverse speed of 80 mm/min

<u>Study</u>:

- Optical metallography
- SEM
- HRSEM
- Creep tests at 250° C and at 315° C
- TEM study
- Thermal stability of AA2024-T3 at 300^oC for up to 280 hours

Results

AA2024-T3 parent metal – optical metallography

 $Nugget-optical\ metallography$

AA2024-T3 HRSEM images of raw material and after 170 hour long exposure to 315^{0} C

AA2024-T3 HRSEM image - 170 hour at 315^oC

Parent material

<001> z.a.

Parent material

BF image

Crept parent material - 17 hours, 120MPa, 250^oC

Crept parent material - 17 hours, 120MPa, 250^oC

FSW – as welded

FSW – as welded

<001> z.a.

Crept FSW material - 139 hours, 10MPa, 315^oC

Crept FSW material - 139 hours, 10MPa, 315^oC

Crept FSW material 139hrs, 10MPa, 315⁰C

Aged 280hrs (a) 300^oC

College of Engineering, Karmiel

Aged 280hrs @ 300⁰C

Discussion

- The stress exponent points at dislocation creep
- The dislocation density and networks observed at the parent AA2024-T3 metal as well as the dislocation free grains at the welded nugget point at DRX occurring due to heavy plastic deformation during FSW, this is in line with optical microscopy
- The appearance of ultrafine grains at the crept material can be related to DRX
- Subgrains do not disappear during creep of the parent material

- AA2024 was introduced in 1931 (Alcoa SPD-10-036), is there anything left to study about its microstructure?
- The answer is YES!
- $T(Al_{20}Cu_2Mn_3)$ Wang and Starink, Int. Mater. Rev., 50, 193-215, (2005)

Phase	Crystal structure	Lattice parameter (Å) a = 12.6		
Al ₁₂ (Fe,Mn)3Si	lm3			
Al ₇ Cu ₂ Fe	P4/mnc (tetragonal)	a = 6.32, c = 14.76		
$Mg_2Si(\beta)$	Fm-3m	a = 6.34		
$Al_2Cu(\theta)$	l4/mcm (tetragonal)	a = 6.03, c = 4.86		
AlFeMgSi	P6/mmm (hex)	a = 6.62, c = 14.63		
$CuMgAl_2(S)$	Cmcm	a = 3.93, b = 9.42, c = 7.16		
Al (a) Fm-3m		a = 4.01		

Zhang et al., Acta Mater., 111, 385-398, (2016)

- The θ aging sequence: $\alpha(ssss) \rightarrow GP \ zones \rightarrow \theta''(Al_3Cu) \rightarrow \theta'(Al_2Cu)$ $\rightarrow \theta(Al_2Cu)$
- The S aging sequence: $\alpha(ssss) \rightarrow GPB \ zones \rightarrow S''(Al_2CuMg)$ $\rightarrow S'(Al_2CuMg) \rightarrow S(Al_2CuMg)$

• The chemical composition of the precipitates together with their morphology are in line with reports on S (Al₂CuMg) and θ (Al₂Cu) precipitates

Conclusions

- The AA2024-T3 alloy undergoes precipitation process during exposure to creep temperatures
- The material undergoes DRX during the FSW
- The parent metal undergoes DRX during creep, precipitation processes occur as well
- The friction stir welded material, which has already recrystallized during welding, undergoes the same processes so that ultra-fine grains are being created concurrently

- Other microstructural changes of the friction stir welded AA2024-T3 such as grain coarsening are still under investigation
- Complexity arising from the material being both friction stir welded and unstable

Acknowledgements

- This research project is partially funded by ORT Braude College of Engineering, Israel
- The assistance of Dr. Yaron Kauffmann with the TEM study and of Dr. Alexander Katz-Demyanetz with the SEM\HRSEM is highly appreciated
- Thanks are due to my students Mr. Dmitry Kalinka, Mrs. Yulia Larsen, Mr. Jacob Shegol and Mr. Tal Rashkovsky

Thank you for your attention!

