GD&T-Geometric Dimensioning & Tolerancing

,רונן קומריאן

. עובד בקמ"ג בתחום הפיתוח, תכן הנדסי, ובעבר גם בעיבוד שבבי, משנת 1998

מלמד את נושא ה – GD&T במכללה להנדסה סמי שמעון, קמ"ג

<u>השכלה:</u>

תואר ראשון בהנדסת מכונות, מהמכללה להנדסה SCE באר שבע. תואר ראשון בניהול, האוניברסיטה הפתוחה.

.תואר שני בהנדסת אנרגיה, אוניברסיטת בן גוריון

050-6244850 ronenkom@gmail.com

<u>קורסים:</u>

- ASME "Geometric Dimensioning & Tolerancing Fundamentals + Advanced Applications with Stacks and Analysis "- Course (2010)
- **2.** ASME "Dimensioning and Tolerancing Principles for Gages and Fixtures" Course (2012)

<u>הסמכות:</u>

- 1. GDTP Geometric Dimensioning & Tolerancing Professional Senior Level 3355
- 2. GDTP Geometric Dimensioning & Tolerancing Professional Technologist Level 0843

Table of Contents

What is GD&T and advantage
 design and manufacture component

 Coordinate dimension VC gd&t
 measurement Hole methods (cmm, gage)

GD&T – international Drawing language

international Drawing language, Applied drawings to describe a mechanical parts.

- **Rules:** rule #1, rule #2...
- Settings: Assembly, Part, feature, datum, DRF...
- Tools: dimensions, shape, orientation, location...

GD&T - precise language

Geometry dimensions and tolerances is a precise language.

Copyright © 2017 all rights reserved

Ronen ko Merian

GD&T – Advantages

- Functional design
- Design by limits
- Maximum match between
 components.
- The ability to calculate tolerance stuck easily and systematically
- Process repeatability.
- Reduction of product disqualifications
- Shorter production duration.
- Reduce costs.

Size Does Not Control Interrelationship between Individual feature

Size Does Not Control Interrelationship between Individual feature

Copyright © 2017 all rights reserved

Size Does Not Control Interrelationship between Individual feature

Set 3D design and Allocated tolerance method

GD&T Tolerance stuck

GD&T Tolerance stuck

RULE NUMBER 1					
MOVE TO		MAXIMUM		MINIMUM	
RIGHAT →	(+)	(+) max	(+)	(+) min	
LEFT	(-)	(-) min	(-)	(-) max	

				MAXIMUM		MINIMUM	tolerance
part number	DIM	description from/to	(+)	(+) max	(+)	(+) min	tolerance
cylinder	А	Datum B to hole position BSC DIM	(-)	7.59	(-)	7.59	0
cylinder	В	Hole position	(+)	0.02	(+)	0.02	0.02
cylinder	С	Hole size	(+)	0.005	(+)	0	0.005
pin	D		(-)	0	(-)	0.005	0.005
		SUB TOTAL					0.03
		ANSWER					TOL
comment							OPTMIZED?
							YES
							NO

Ronen koMerian

Define Position tolerance by SD

- **1. Target:** 0.02 position diameter circle
- 2. 1000 points of normal distribution.
- 3. standard deviation 0.0035

Results

> print(paste0("the number of points in the circle are:",num_count)) "the number of points in the circle are 981" [1]

> print (paste0("the number of points in the circle in present are:",(num_count*100)/ num, paste0("%")))

- [1] "the number of points in the circle in present are:98.1%"

Define tolerance by SD

Define tolerance by SD

Tolerance stuck – SD 0.0035, radius 0.01 mm

What is required to design and manufacture this component

Example 3 How to measure a hole diameter

Several methods of measurement

Telescoping Gage Set

Example 3

On drawing

Ø 0.5 (M) A B C

Size diameter?

Ø 20 ^{+0.1}

How to measure a hole diameter

Cmm **Average** result: 5 measurement points were taken

	Sampling	Diameter
	number	Measurement
	1	20.07
	2	20.09
	3	20.09
	4	20.01
n=	5	20.05
	\overline{x}	
	Average	20.062
	Ŝ	
	standard	
	deviation	0.033466401
	D.O.F=n-1	5-1=4

Confidence interval equation

$$p\left(\bar{x} - t_{\frac{\alpha}{2}}\frac{\hat{s}}{\sqrt{n}} < \mu < \bar{x} + t_{\frac{\alpha}{2}}\frac{\hat{s}}{\sqrt{n}}\right) = 1 - \alpha$$

Confidence interv	90%			
α	0.1			
$\alpha/2$	0.05			
$t(\alpha/2)$		2.132		
Minimum value	۷	μ	>	Maximum value
20.03009115	>	μ	>	20.09390885

25

Copyright © 2012 all rights reserved

Ronen koMerian

THE END

THANK YOU, QUESTIONS?

Copyright © 2017 all rights reserved Ronen ko Merian