

Multipath effects on 5G and 6G wireless links operating in millimeter wavelengths

Prof. Yosef Pinhasi

Features

- Enhanced Mobile Broadband (eMBB):
 - Faster connections
 - Higher throughput
 - More capacity
- Ultra-Reliable Low-Latency communications (URLLC)
- Massive Machine-Type Communications (mMTC):
 - Large number of various devices
 - IoT devices
 - Drones
 - Autonomous cars

Frequency Bands

• <u>Low-band</u>: 600–850 MHz,

–Download 30–250 MBPS

• <u>Mid-band</u>: 2.5–3.7 GHz

–Download 100–900 MBPS

• <u>High-band</u>: 25–39 GHz

-Download GBPS

1000x required increase in capacity

- X10 More spectrum
- X10 More small cells
- X10Higher efficiency

Frequency spectrum for wireless communications

BAND		IEEE	FREQUENCY	WAVELENGTH
Extremely Low Frequency	ELF		3 – 30Hz	
Super Low Frequency	SLF		30 - 300Hz	
Ultra Low Frequency	ULF		300 - 3,000 Hz	1,000 - 100 Km
Very Low Frequency	VLF	$\langle \psi \rangle$	3 - 30 KHz	100 – 10 Km
Low Frequency	LF	®	30 - 300 KHz	10 - 1 Km
Medium Frequency	MF	IEEE	300 - 3,000 KHz	1 - 0.1 Km
High Frequency	HF		3 - 30 MHz	100 - 10 m
Very High Frequency	VHF		30 - 300 MHz	10 - 1 m
Ultra High Frequency	UHF		300 - 3,000 MHz	1 - 0.1 m
		L	1 - 2 GHz	
		S	2 - 4 GHz	
Super High Frequency	SHF		3 - 30 GHz	10 - 1 cm
		С	4 - 8 GHz	
		Х	8 - 12 GHz	
		Ku	12 - 18 GHz	
		Κ	18 - 26.5 GHz	
		Ka	26.5 - 40 GHz	
Extremely High Frequency	EHF		30 - 300 GHz	1 - 0.1 cm
		V	40 - 75 GHz	
		W	75 - 110 GHz	
Sub-millimeter (TeraHertz)	FIR		300 - 3,000 GHz	1 - 0.1 mm
Mid infra-red	MIR		3 - 30 THz	$100 - 10 \ \mu m$
Near infra-red	NIR		30 – 300 THz	$10-1 \ \mu m$

5th Generation Spectrum

The EHF (Millimeter Wave) band

- Free of users.
- Unlicensed (60GHz).
- Broad bandwidths for high data rate information transfer.
- High directivity and spatial resolution.
- Low probability of interference / interception (LPI).
- Small antenna and equipment size.
- Low transmission power.
- Atmospheric attenuation
- Frequency dispersion
- Affected by weather conditions

Indoor propagation

Indoor propagation

- > 7 rays: LOS and 6 reflections
- \blacktriangleright Concrete walls (10 cm)
- Both isotropic antennas

Multi-ray model

Article

Millimeter Wave Propagation in Long Corridors and Tunnels—Theoretical Model and Experimental Verification

Liat Rapaport ^{1,}*^(D), Gad A. Pinhasi ² ^(D) and Yosef Pinhasi ¹^(D)

- ¹ Department of Electrical and Electronics Engineering, Ariel University, Ariel 40700, Israel; yosip@ariel.ac.il
- ² Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; gadip@ariel.ac.il
- * Correspondence: liatra@ariel.ac.il

Received: 1 April 2020; Accepted: 25 April 2020; Published: 26 April 2020

Fresnel's Equations – reflection coefficients

$$\Gamma_{TM_i} = \frac{\epsilon_r \sin(\theta_g) - \sqrt{\epsilon_r - \cos^2(\theta_g)}}{\epsilon_r \sin(\theta_g) + \sqrt{\epsilon_r - \cos^2(\theta_g)}}$$

TM- transverse magnetic:

the magnetic field is parallel to the interface plain

$$\Gamma_{TE_i} = \frac{\sin(\theta_g) - \sqrt{\epsilon_r - \cos^2(\theta_g)}}{\sin(\theta_g) + \sqrt{\epsilon_r - \cos^2(\theta_g)}}$$

TE- transverse electric:

the electric field is parallel to the interface plain

Dielectric constants

Material	Dielectric Constant ϵ_r	Frequency
Fused Silica	3.85	30 GHz
Glass	3.9	25 GHz
HDPA	2.34	27-30 GHz
Nylon	3.2	50 GHz
Teflon	3.0	22 GHz
Concrete	3.2-5	10GHz
Formica	6	-
Asphalt	3.18	-

Specular reflections

Complex Permittivity

Material	f=28GHz		
	arepsilon'	σ	$tg[\delta]$
Concrete	5.31	0.48 [<i>S</i> / <i>m</i>]	$58 \cdot 10^{-2}$
Brick	3.75	0.038 [<i>S</i> / <i>m</i>]	$6.5 \cdot 10^{-2}$
Glass	6.27	0.23 [<i>S</i> / <i>m</i>]	$23.5 \cdot 10^{-2}$

Reflection from of Different Building Materials

Long corridor - tunnel

Polarization of Reflected Ray at Different Surfaces

Multi-path transfer function

$$H_{norm}(jf) = \frac{E_r(Tunnel)}{E_r(LOS)} = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{R_0}{R(m,n)} \cdot \Gamma_i^{|m|} \cdot \Gamma_j^{|n|} \cdot \frac{G(\theta,\phi)}{G_{LOS}} \cdot e^{-j2\pi f \Delta \tau(m,n)}$$

Antenna polarization	Walls polarization	Floor and ceiling polarization	
Vertical	Γ_{TE}	Γ_{TM}	
Horizontal	Γ_{TM}	Γ_{TE}	

$$G_d(\Theta, \Phi) = \sqrt{G_t(\Theta, \Phi) \cdot G_r(\Theta, \Phi)}$$

$$\Delta \tau(m,n) = \frac{R(m,n) - R_0}{c}$$

Gain and Phase

Link Budget

Different Frequencies Effects

Delay spread and Inter-Symbol Interference

Impulse Response

• Transfer function:

$$\tilde{H}(jf) = \frac{\tilde{E}_R(jf)}{\tilde{E}_T(jf)} = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \tilde{A}(m,n) \cdot e^{-j2\pi f \cdot \tau(m,n)}$$

• Impulse response

$$h(t) = \operatorname{Re}\left\{\int_{0}^{\infty} \tilde{H}(jf)e^{+j2\pi ft}df\right\} = \operatorname{Re}\left\{\sum_{m=-\infty}^{+\infty}\sum_{n=-\infty}^{+\infty}\tilde{A}(m,n)\cdot\delta\left[t-\tau(m,n)\right]\right\}$$

Power Delay Profile

• Norm

$$\left\|h(t)\right\|^{2} = \int_{0}^{\infty} \left|h(t)\right|^{2} d\tau = \int_{0}^{\infty} \left|\tilde{H}(jf)\right|^{2} df = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \left|\tilde{A}(m,n)\right|^{2}$$

 \mathbf{n}

• Power delay profile:

$$P_{h}(\tau) = \frac{\left|h(\tau)\right|^{2}}{\left\|h(\tau)\right\|^{2}}$$

• Satisfying:

$$\int_{0}^{\infty} P_h(\tau) d\tau = 1$$

Group Delay

$$\overline{\tau} = \left\langle \tau \right\rangle = \int_{0}^{\infty} \tau \cdot P_{h}(\tau) d\tau = \frac{\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \tau(m,n) \cdot \left| \tilde{A}(m,n) \right|^{2}}{\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \left| \tilde{A}(m,n) \right|^{2}}$$

Delay Spread

$$\overline{\tau^{2}} = \int_{0}^{\infty} \tau^{2} \cdot P_{h}(\tau) d\tau = \frac{\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \tau^{2}(m,n) \cdot \left| \tilde{A}(m,n) \right|^{2}}{\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \left| \tilde{A}(m,n) \right|^{2}}$$

$$\sigma_{\tau} = \sqrt{\tau^{2}} - \left(\overline{\tau}\right)^{2} = \sqrt{\int_{-\infty}^{+\infty} \tau^{2} \cdot P_{h}(\tau) d\tau} - \left[\int_{-\infty}^{+\infty} \tau \cdot P_{h}(\tau) d\tau\right]^{2}$$

256-QAM OFDM

