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Abstract

The fields of statistics and machine learning design algorithms, models, and approaches to improve
prediction. Larger and richer behavioral data increase predictive power, as evident from recent advances
in behavioral prediction technology. Large internet platforms that collect behavioral big data predict
user behavior for internal purposes and for third parties (advertisers, insurers, security forces, political
consulting firms) who utilize the predictions for personalization, targeting and other decision-making. While
standard data collection and modeling efforts are directed at improving predicted values, internet platforms
can minimize prediction error by "pushing" users’ actions towards their predicted values using behavior
modification (BM) techniques. The better the platform can make users conform to their predicted outcomes,
the more it can boast its predictive accuracy and ability to induce behavior change. Hence, platforms
are strongly incentivized to “make predictions true". This strategy is absent from the ML and statistics
literature. Investigating its properties requires incorporating causal notation into the correlation-based
predictive environment—an integration currently missing. To tackle this void, we integrate Pearl’s causal
do(.) operator into the predictive framework. We then decompose the expected prediction error given BM,
and identify the components impacting predictive power. Our derivation elucidates the implications of such
BM to data scientists, platforms, their clients, and the humans whose behavior is manipulated. BM can make
users’ behavior more predictable and even more homogeneous; yet this apparent predictability might not
generalize when clients use predictions in practice. Outcomes pushed towards their predictions can be at
odds with clients’ intentions, and harmful to manipulated users.

Keywords behavior modification · behavioral big data · machine learning · prediction error · causal intervention ·
internet platforms

1 Introduction

Recent years have seen an incredible growth in predictive modeling of user behavior using behavioral big data in
both industry and in academia. Behavioral big data (BBD) are large and highly detailed datasets on human and
social actions and interactions (Shmueli, 2017). BBD-based predictions now shape almost every aspect of modern
life, both online and on ground (Agrawal et al., 2018). In contrast to how statistics and machine learning have
approached the task of reducing prediction error by improving predictions, a surprising new approach relies on
behavior modification techniques, now popularly used in industry. Such behavior modification can be aimed at
pushing user actions towards their predicted values, thereby making predictions more certain.

In her enlightening and alarming book, Zuboff (2019) describes the processes used by several large internet platforms
that collect BBD to package the raw material of users’ actively shared data and passively generated data (e.g. location
data, video usage, friendship ties) into “prediction products" that are then sold to business customers–insurance
companies, marketers, advertisers, security forces, political consulting firms, etc.–in “behavioral futures markets".
The predictions are used to modify users’ behaviour, shaping it toward desired commercial or other outcomes.1
Often, the BBD platform2 delivers the interventions on its client’s behalf.

One example is the recently launched Google Analytics “predictive audiences" service that “automatically enriches
your data by bringing Google machine-learning expertise to bear on your dataset to predict the future behavior
of your users".3 Another example is Facebook’s “loyalty prediction" service which offers advertisers the ability

1www.theguardian.com/technology/2019/jan/20/shoshana-zuboff-age-of-surveillance-capitalism-google-facebook
2We use the term “BBD platform" for internet platforms that collect users’ BBD
3“Purchase Probability, which predicts the likelihood that users who have visited your app or site will pur-

chase in the next seven days. . . Churn Probability, predicts how likely it is that recently active users will not
visit your app or site in the next seven days." https://blog.google/products/marketingplatform/analytics/
new-predictive-capabilities-google-analytics/
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to target users based on how they will behave, what they will buy, and what they will think. Commenting on this
service,4 Frank Pasquale, a law professor at the University of Maryland and scholar at Yale’s Information Society
Project said he

worried how the company could turn algorithmic predictions into “self-fulfilling prophecies,”
since “once they’ve made this prediction, they have a financial interest in making it true.” That is,
once Facebook tells an advertising partner you’re going to do some thing or other next month, the
onus is on Facebook to either make that event come to pass, or show that they were able to help
effectively prevent it (how Facebook can verify to a marketer that it was indeed able to change the
future is unclear).

In other words, the more accurate these prediction products, the higher value they provide their customers, and in
turn the higher the revenues for the BBD platform. Moreover, the better the BBD platform is able to make users
conform to their algorithmically determined destiny, the more it can boast both its predictive accuracy and its ability
to induce behavior change (Rushkoff, 2019). Hence, BBD platforms have a strong incentive to improve prediction
accuracy, that is, to reduce prediction error.

While Zuboff (2019) uncovered the dangers of a company using behavior predictions to manipulate its customers’
behavior for its own commercial gain, we take this one step further: BBD platforms have the technical ability and
incentive to manipulate their users’ behaviors not only in directions of increasing their clients’ gains, but also in
a direction that showcases its prediction capabilities, thereby misleading its clients and manipulating humans in
possibly dangerous directions. An extreme example is predicting mental health risk for a healthcare stress reduction
app. While the app maker aims to lower stress of high risk users, the BBD platform can demonstrate high prediction
accuracy by turning high risk predictions into high risk realities.

The goal of this work is to introduce a technical vocabulary which enables investigating this new behavior modifica-
tion approach to minimizing prediction error. Technical terminology and notation is needed in order to identify the
properties and implications of the behavior modification approach to resulting predictive power. Various questions
arise: Can behavior modification mask poor predictive algorithms? Can one infer from the manipulated predictive
power the counterfactual of non-manipulated predictive power? Can platform clients running routine A/B testing
detect this scheme? What are the roles of personalized predictions and of personalized behavior modifications
within the error minimization strategy?

Using the do(.) operator by Pearl (2009), we aim to enable the analysis and evaluation of the effect of behavior
manipulation on predictive power. While do calculus is well developed for causal effects identification (Pearl,
2009), the challenge here lies in combining the causal do(.) operator into the existing correlation-based predictive
framework. Our goal is to make transparent the effects of behavior modification on predictive power, thereby enable
the study of its impact on business, social, and humanistic aspects, and its potential implications.

2 The statistical and machine learning approach to reducing prediction error: improve
predictions

The fields of statistics and machine learning have been introducing new and improved models, algorithms, ap-
proaches, and even data, aimed at improving predictive power. Approaches such as regularization, boosting, and
ensembles have proven highly useful in generating more precise predictions. From transparent regression models and
tree-based algorithms, to more blackbox support vector machines, k-nearest neighbors, neural nets and especially
deep learning algorithms, their justification and adoption lies in their ability to capture intricate signals linking
inputs and a to-be-predicted output.

Predictive performance is typically measured by out-of-sample prediction errors, which compare predicted values
with actual values for new observations. More formally, the prediction error ei for record i is defined as the
difference between the actual outcome value yi and its prediction ŷi, that is ei = yi − ŷi. For a sample of n records,
we have a set of actual outcome values ~y = [y1, y2, . . . , yn], a set of predicted outcome values ~̂y = [ŷ1, ŷ2, . . . , ŷn],
and a set of prediction errors ~e = [e1, e2, . . . , en]. For each record i we also have predictor information in the form
of p measurements ~xi = [xi,1, . . . , xi,p]. The predictor information for n records is contained in the matrix X .
Predicted values are obtained from f̂ , the algorithm trained on (or model estimated from) data on inputs X and
actual outcomes ~y, so that ~̂y = f̂(X).

2.1 Targets of statistical and machine learning efforts

Predictive algorithms and methods are designed and tuned to minimize some aggregation of the error values (~e)
by operating on the predicted values (~̂y). Improving predicted values is typically achieved by improving three
components:

4https://theintercept.com/2018/04/13/facebook-advertising-data-artificial-intelligence-ai/
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1. structure of the algorithm/model f̂ that relates the predictor information X to the outcome (e.g., new
algorithms and methods),

2. estimation/computation of f̂ ,

3. quality and quantity of predictor information X . Larger, richer behavioral datasets have been shown to
improve predictive accuracy (Martens et al., 2016).

In all these approaches, the actual outcome values ~y are considered fixed. The top panel of Figure 1 illustrates the
statistical and machine learning approach of improving the above three components in order to minimize prediction
error.

2.2 Components affecting predictive power: dissecting the expected predicted error

When predicting an outcome y that is not expected to be manipulated between training and deployment, we anticipate
prediction error due to the inability of the model f̂ to (1) correctly capture the underlying f even with unlimited
training data (bias), (2) correctly estimate f due to insufficient data (variance), (3) capture the errors for individual
observations ~ε (noise). For predicting a numerical outcome or probability for a new observation, these three sources
are formalized through a bias-variance decomposition of the expected prediction error (EPE), using squared-error
loss5(Geman et al., 1992):

EPE(~x) = E
(
(y|~x)− f̂(~x)

)2
= E(ε2) +

(
f(~x)− E(f̂(~x)

)2
+ E

(
f̂(~x)− E(f̂(~x)

)2
= σ2 +Bias2(f̂(~x)) + V ar(f̂(~x)).

(1)

In statistics and machine learning, prediction is based on an assumption of continuity, where the predicted obser-
vations come from the same underlying processes and environment as the data used for training the predictive
algorithm and testing its predictive performance. The deterministic underlying function f and the random noise
distribution are both assumed to remain unchanged between the time of model training and evaluation and the time
of deployment. This assumption underlies the practice of randomly partitioning the data into separate training and
test sets (or into multiple “folds" in cross validation), where the model is trained on the training data and evaluated
on the separate test data. Of course, the continuity assumption is often violated to some degree depending on the
distance (temporal, geographical, etc.) between the training/test data and the to-be-predicted data and how fast or
abruptly the environment changes between these two contexts. These challenges increase prediction errors beyond
the disparity observed between training and test prediction errors. Hence, predictive power based on the test data
might provide an overly optimistic estimate compared to actual performance at deployment.

2.3 Statistical and machine learning efforts at BBD platforms

Companies such as Google, Facebook, Uber, Netflix, and Amazon have been investing in improving prediction
algorithms through collecting, buying, storing and processing unprecedented amounts and types of data. They have
also hired top statistics and machine learning talent, purchased AI companies, and developed in-house predictive
algorithms and platforms. These are aimed at improving predictions along the three strategies described earlier.

3 A new industry approach to reducing prediction error: manipulating user actions
(outcome values)

BBD platforms now have the incentive and technology6 to minimize prediction errors in a direction that is absent
from academic prediction research: by manipulating actual outcomes (~y). When the outcome of interest is a human
behavior online or offline (clicking an ad, purchasing an item, posting sensitive information, visiting a doctor, voting,
etc.), this action can be indirectly manipulated by using behavior modification techniques.7 The most popular
technique is the nudge, defined as “any aspect of the choice architecture that alters people’s behavior in a predictable
way without forbidding any options or significantly changing their economic incentives" (Thaler and Sunstein, 2009,
p. 6). Zuboff (2019) identifies two more types of behavior modification: herding, which is controlling key elements
in a person’s immediate context in order to guide their behavior towards a predictable one; and operant conditioning,

5Assuming underlying model E(y|~x) = f(~x) + ε, where ε has zero mean and variance σ2.
6For example, Facebook’s “AI backbone" FBLearner Flow combines machine learning and experimentation

capabilities that can be applied to the entire Facebook userbase https://engineering.fb.com/core-data/
introducing-fblearner-flow-facebook-s-ai-backbone/

7Behavior modification, or behavior change techniques are “an observable, replicable and irreducible component of an
intervention designed to alter or redirect causal processes that regulate behavior." (Michie et al., 2013)
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Figure 1: Prediction error with no behavior modification (top) vs. with behavior modification (bottom). Manipulating
platform behavior do(B) pushes the observed user behavior towards its predicted value. Note that only orange
arrows denote a causal effect. The squiggly black arrows denote a correlation-based predictive relationship.

a term coined by the famous behavioral psychologist B.F. Skinner, which uses positive and negative reinforcement
to encourage certain behaviors and extinguish others. BJ Fogg, Standford university’s Behavior Design Lab director,
lists seven types of “persuasive" technology tools (Fogg, 2002). While the field of marketing has used behavior
modification even prior to the advent of the internet (Nord and Peter, 1980), today’s technologies and big data
enable more covert, pervasive, and powerful manipulation due to their networked, continuously updated, dynamic
and pervasive nature (Yeung, 2017). Zuboff (2019) explains,

These interventions are designed to enhance certainty by doing things: they nudge, tune, herd,
manipulate, and modify behavior in specific directions by executing actions as subtle as inserting
a specific phrase into your Facebook news feed, timing the appearance of a BUY button on your
phone, or shutting down your car engine when an insurance payment is late.

While these examples do not necessarily involve prediction, prediction-based behavior modification is common in
recommendation systems, targeted advertising, precision marketing, and other “personalized" interventions that
intend to cause human users to change their behavior in a specific direction that is beneficial to the intervention
initiator: towards longer online engagement, higher purchase propensity, increased information sharing, or, in our
case, towards the platform’s predicted values.

The two key points are that (1) BBD platforms have a plethora of powerful and tested behavior modification tools,
and (2) behavior modification techniques are designed to modify behavior in a predictable way –here “pushing"
outcome values towards their predicted values – in order “to shape individual, group, and population behavior in
ways that continuously improve their approximation to guaranteed outcomes." (Zuboff, 2019, p. 339)

3.1 Two hypothetical scenarios

Consider an insurance company interested in acquiring new customers, but trying to avoid high-risk customers.
Now consider an internet platform that is interested in selling to the insurance company the risk scores of their
users. To showcase their predictive power, the platform can generate risk scores for a set of users, then use behavior
modification to “push" users’ behaviors towards their predicted scores (e.g. encouraging/discouraging engagement
with the app during driving; showing/not-showing ads for alcoholic beverages during work hours). Such a strategy
would turn high-risk predictions into high-risk realities. Note that in this scenario, the gap between the platform’s
goal (showcase accurate predictions) and the insurance company’s objective (avoiding high risk customers) leads to
pushing high-risk users’ behaviors in a direction that is not only ethically dubious but also at odds with the insurance
company’s interests.

Another example is a political consulting firm who is interested in reaching likely “Vote for T" individuals. An
internet platform wants to sell predicted “Vote for T" scores of their users might prove their predictive power by
generating “Vote for T" probability predictions, and then using behavior modification to push users’ behaviors
towards voting for T. In this scenario, the platform’s strategy would turn voting predictions into voting realities.
Note that in this scenario, on top of serious ethical and legal implications, the platform’s strategy might be in line
with the political consulting firm’s goal if the firm is trying to promote voting for T, but at odds if the consulting
firm is non-partisan, or trying to promote a different candidate.
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3.2 Why would a platform follow this strategy?

Given the financial incentives and technical capabilities of internet platforms to showcase predictive power for
their prediction products, using behavior modification for “improving" prediction might be used intentionally by a
platform’s management or by a data scientist under pressure to showcase performance.

Even without intention, such a strategy might be taking place on a platform due to the now-poplar use of algorithms
such as reinforcement learning, which employ behavior modification (and user feedback) in order to optimize a
predetermined objective function. The common objective of machine learning algorithms to minimize prediction
error would lead to this new outcome of “improved" prediction.

3.3 Prediction error under behavior modification: Reducing uncertainty by manipulating the deployment
scenario

In the case of no behavior modification, differences between the training and deployment environments introduce
uncertainty, typically by increasing bias and/or changing the noise distribution, and are therefore likely to cause
larger prediction errors at deployment. Behavior modification implies that, by design, the contexts of training and
deployment of the predictive model are made different, albeit in a way that reduces uncertainty. While differences
between the deployment and training contexts arising from uncontrollable and unforeseeable conditions increase
uncertainty, behavior modification intends to shift actual outcome values y in a specific direction, which is by
design closer to ŷ. For example, when predicting that a user is likely to become depressed, displaying depressing
news, friends’ posts, and depression-related ads increases that user’s chance of depression (Facebook’s emotional
contagion experiment by Kramer et al. (2014) displays such capability). When predicting the arrival time of a
delivery, incentivizing faster/slower driving can increase the accuracy of the predicted arrival time. Displaying
donation amounts by “friends" with amounts similar to the user’s predicted amount can increase the chance the user
donates the predicted amount.

3.4 Notation for intentional manipulation in predictive scenarios

To study the components affecting prediction error under behavior modification, it is useful to decompose the new
form of expected prediction error (under behavior modification) into separate meaningful sources. This can help us
identify components such as bias, variance, and noise. However, we need technical vocabulary that can encode both
correlation-based and causal-based terminology.

The challenge is that standard notation and terminology used in statistics and machine learning for predictive
modeling is insufficient for formalizing the problem of minimizing prediction error by intentionally manipulating the
actual outcome values by way of behavior modification. The bottom panel of Figure 1 illustrates this new scenario.
Specifically, predictive terminology lacks notation for denoting an intentional manipulation, as distinguished from
correlation-based relationships. At the same time, while causal notation does exist in the world of causal effects and
causal inference (Pearl, 2009; Rubin, 1974), in that world correlation-based prediction is excluded. Figure 1, which
includes both causal arrows (orange) and a correlational connector (depicted as a squiggly black arrow, but with
no causal interpretation8) is incoherent in the world of causal diagrams, as well as in the world of prediction. We
therefore propose to integrate causal notation into the existing predictive terminology and context in a parsimonious
way. We do this by adopting the do(.) operator by Pearl (2009), where do(B) denotes that variable B is not
simply observed but rather manipulated.9 This allows us to incorporate intentional behavioral modification into
the predictive modeling context. We then use this notation to decompose the expected prediction error, in order to
identify the different components that affect predictive power.

Denote the manipulated outcome as ỹ. Using the do(.) operator,10 we note that it is incorrect to write ỹ .
= do(y)

because the user’s outcome y is not directly manipulated. Instead, the modified outcome is fully mediated: the
platform tailors its behavior B (do(B) or personalized do(Bi)) to manipulate the user’s instinct or mental state
(e.g. emotion, thought), which in turn leads to the modified outcome ỹi. This manipulation is specifically aimed at
pushing the outcome towards its prediction. We therefore write

ỹi
.
= yi|do(Bi). (2)

8We chose to use a single-headed squiggly arrow rather than a bi-directional straight arrow for the correlation-based
predictive relationship to convey the asymmetric input-output roles of X and y. In causal diagrams, bi-directional arrows
convey an unobservable variable affecting the two variables at the arrowheads, and there is no way to represent an asymmetric
correlation-based predictive relationship.

9“The do(x) operator is a mathematical device that helps us specify explicitly and formally what is held constant, and what is
free to vary" (Pearl, 2009, p. 358)

10It is possible to use Rubin’s potential outcomes notation intended for estimating treatment effects (e.g. Imbens and Rubin,
2015, p. 33). This requires defining B = {0, 1, 2, . . .} as the intervention assignment, and denoting by yi(B) the outcome,
where yi(0) is the un-manipulated outcome. The quantity yi|do(B), ~x is written as yi(B)|B, ~x. We prefer the do(.) operator
since it conveys the causal nature of the manipulation B and clearly differentiates it from the correlation-based prediction
components ~x.
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Table 1: Short and full notation

Short Full notation/definition Description
notation
yi yi|~xi = f(~xi) + εi Outcome under no manipulation
f f(~x) True function under no manipulation
f̂ ŷ|~x = f̂(~x) Predicted outcome under no manipulation
σ2 V ar(ε) = E(ε2) Noise variance under no manipulation
fdo g(do(B), ~x) True function under do(B)
ỹi yi|do(Bi), ~xi = g(do(Bi), ~xi) + ε̃i Manipulated outcome
σ̃2 V ar(ε̃) = V ar(ỹ) = E(ε̃2) Noise variance under do(B)

To allow heterogeneous effects of the behavioral modification, by the user’s specific predictor information Xi = xi
(e.g. user i’s browsing history, demographics, location), we can write:

ỹi
.
= yi|do(Bi), ~xi. (3)

Second, to denote the predictive (correlation-based) relationship between the outcome and the predictors, we
continue using the standard predictive notation:

yi = f(~xi) + εi. (4)

Third, for the manipulated outcome, we use fdo to denote the underlying function, which can be a completely
different function from f :

ỹi = fdo(do(Bi), ~xi) + ε̃i = g(do(Bi), ~xi) + ε̃i. (5)

We use ∼ on top of terms affected by do(B). We note that the quantity E(ỹi|~xi)−E(yi|~xi) = E(ỹi − yi|~xi), is
called the (population) Conditional Average Treatment Effect (CATE) (Athey and Imbens, 2016; Imbens and Rubin,
2015) or Individual Treatment Effect (ITE) (Shalit et al., 2017) and is of key interest in treatment effect estimation
and testing.11

In the predictive modeling phase, we estimate f using f̂ . We then compare the predicted value ŷ to the manipulated
outcome ỹ. Table 1 provides the short notation, full notation and description for each of the above terms. Together
with equations 2-5, we now have a sufficient vocabulary for examining the prediction error under behavior
modification.

3.5 Behavior modification for improving predictive power vs. estimating or predicting the effect of
behavior modification

Behavior modification techniques are used by BBD platforms for two purposes other than reducing prediction
error: for estimating the overall effect of a behavior modification intervention (A/B testing), and for predicting
personalized user reactions to a behavior intervention for precision targeting (uplift modeling). These two purposes
differ from the focus in this paper, and are also different from each other. Using the terminology and do(.) operator,
we briefly describe these approaches in Appendix A, summarizing the key differences in Table 2.

3.6 Expected prediction error of manipulated outcomes (ẼPE)

When outcome values are intentionally “pushed" towards their predictive values, it is intuitive that the resulting
expected prediction error will be lower than the no-manipulation outcome values.12 We can now formalize the
following questions: Given a specific prediction algorithm f̂ , trained on data with no behavior modification (X, ~y),
when will the expected prediction error for a manipulated user with predictors ~x and manipulation do(Bi) = b be
lower than if the user was not manipulated? That is, for a p-norm loss function Lp, when will we get

E[Lp(ỹ, f̂(b, ~x))] < E[Lp(y, f̂(~x))]? (6)

When might the manipulation lead to worse predictive power?

To answer these questions, we proceed to break down the EPE into several non-overlapping components. Using
the standard L2 loss function, we can obtain the EPE under behavior modification as follows (the full derivation is

11Note that yi|~xi assumes no manipulation. Pearl (2009, p. 70-72) offers an alternative formulation to encode manipulation
vs. no manipulation, by adding a binary intervention indicator IB that obtains values in {do(Bi), idle}. In our case IB = idle
for yi|~xi.

12In the prediction minimization process all subjects are initially not B-manipulated and later a sample is B-manipulated
using personalized modifications.
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Figure 2: Hypothetical prediction of risky driving behaviors given distance, by ride-sharing platform. Illustrates
the effect of behavior modification on shifting the average outcome by CATE = −Bias (blue circles) or on both
shifting the average outcome and shrinking the variance σ̃2 (red circles). Yellow X marks are predicted values f̂(xi).
(The schematic assumes a very large training sample, and thus f̂ ≈ E(f̂).)

given in Appendix B):

ẼPE(~x) = E
(
y|do(B), ~x− f̂(~x)

)2
= σ̃2 +

[
CATE(~x) +Bias(f̂(~x))

]2
+ V ar(f̂(~x)).

(7)

Each of the terms in eq. 7 has an interesting meaning and different implications on the effect of behavior modification
on EPE. The additive nature of this formulation provides insights on the roles of data size, predictive algorithm
properties, and behavior modification qualities. By comparing ẼPE(~x) to EPE(~x) (the manipulated and non-
manipulated scenarios), we can see the following:

Data size: Whether manipulating or not, data size affects ẼPE via the variance of the predictive algorithm,13

indicating that larger training samples can improve not only predictions, but also the average manipulated
prediction error. Pushing the outcome towards a more stable prediction leads to smaller errors.

Magnitude of behavior modification effect: The second term shows the role of the average behavior modification
magnitude (CATE) in countering the bias of the predictive algorithm. This term is minimized when
CATE = −Bias(f̂), that is, when, on average, do(B) pushes the user’s behavior in a direction and
magnitude that exactly counters the prediction algorithm’s bias. Thus, an effective behavior modification
can improve predictive power by combating the predictive algorithm’s bias, as long as 0 < CATE <
−2Bias or −2Bias > CATE > 0.

Noise (homogeneity of prediction errors): Compared to σ2 in the no-manipulation EPE, the first term in
ẼPE is σ̃2, the noise variance under behavior modification. This means behavior modification can
decrease/increase also the variability of prediction errors (or equivalently, of ỹ relative to y) across different
users.

To modify or not to modify? Three Scenarios

To better understand the trade-offs and implications of the four ẼPE sources (σ̃, CATE,Bias(f̂), V ar(f̂)) on the
expected prediction error, we consider three scenarios. Figure 2 is a simplistic illustration of the roles of CATE and
σ̃. Suppose predictions are drivers’ risk scores in terms of risky driving behaviors and the goal is to minimize the
(squared) differences between the predicted and actual values. A ride-sharing or social media platform can modify
the driver’s behavior by manipulating the driver’s engagement with their app while driving. Suppose the x-axis
is the daily distance traveled, so that risk is a quadratic function of distance. Yet the predictive model estimates a
linear relationship. We consider three specific distances: x1, x2, and x3. While f̂ is a biased algorithm, for x1 there

13The machine learning “bias" is asymptotic in sample size: an algorithm is biased “if no matter how much training data we
give it, the learning curve will never reach perfect accuracy" (Provost and Fawcett, 2013).
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is no bias, for x2 the bias is negative, and for x3 bias is positive (for simplicity, the schematic assumes a very large
training sample and thus f̂ ≈ E(f̂)).

3.6.1 Scenario 1: Low-bias f̂ trained on a very large sample

This scenario would be akin to deep learning algorithms applied to massive training data. The very large sample
means V ar(f̂) ≈ 0 and Bias(f̂) is very small. The strategy of setting CATE = −Bias(f̂) is optimal if the
behavior modification also decreases error heterogeneity so that σ̃2 ≤ σ2. Because the bias is small, the optimal
behavior modification should have a small effect. In Figure 2 f̂(x1) has no bias, and therefore applying behavior
modification to drivers with distance x1 will introduce bias, and is only useful if it can sufficiently shrink the
variability of the resulting risky behaviors (red points).

3.6.2 Scenario 2: High-bias f̂ trained on a very large sample

High-bias algorithms include models with relatively few parameters (e.g. naive Bayes, linear regression, shallow
trees, and k-NN with large k). As in scenario 1, here too V ar(f̂) ≈ 0. The strategy of setting CATE =

−Bias(f̂) (e.g. in Figure 2 increasing average risky behaviors for x2 by |Bias(f̂(x2))| and decreasing it for x3
by |Bias(f̂(x3))|) is optimal if the behavior modification does not increase error heterogeneity, so that σ̃2 ≤ σ2.
While a small modification effect (in the right direction) can help counter the bias, the ideal modification effect must
be as large as the bias. Note that EPE is computed for a specific ~x, and therefore generalizing the above rule to any
~x requires either assuming homoskedastic errors ε̃, or that the inequality holds for all ~x (∀~x σ̃2

~x ≤ σ2
~x).

3.6.3 Scenario 3: High-variance f̂

If the predictive model has high variance and is estimated on a relatively small sample, then potential minimization of

σ̃2 and/or
[
CATE +Bias(f̂)

]2
by way of behavior modification might be negligible relative to V ar(f̂). Because

behavior modification is based on “pushing" behavior towards f̂(~xi), a highly volatile f̂ might result in erratic
do(Bi) modifications in terms of magnitude or even direction. Hence the choice of predictive model or algorithm
can be detrimental to the effectiveness of behavior modification.

4 Discussion

We described a new strategy that might be used by BBD platforms for reducing prediction error which is completely
different from approaches taken by the fields of statistics and machine learning. This strategy involves behavior
modification, and therefore formalizing it into technical language requires supplementing predictive notation
with causal terminology. While our ẼPE formula also applies to behavior modification for commercial benefit
(e.g. advertising), we have focused on the more extreme case of a potentially rogue BBD platform aiming to
minimize prediction errors or unintentionally doing so by using automated personalization techniques such as
reinforcement learning. These two efforts can be misaligned, as in risk prediction applications where the client aims
to reduce risk, while the platform pushes risky users towards the risky action. Using the do(·) operator, we are able to
describe the entire system that includes the training dataset, the predictive algorithm, and the behavior modification.
We are also able to distinguish between this strategy and two related, but different, behavior modification usages
commonly employed by companies: A/B testing and uplift modeling. The same can be applied to other related
approaches such as reinforcement learning, which is especially relevant due to its combined use of prediction and
behavior modification for personalization.

4.1 Technical and business implications

Contrasting the bias-variance decomposition of the manipulated and non-manipulated scenarios highlighted two key
sources of the manipulated prediction error: the CATE-bias relationship, and its tradeoff with the manipulated noise
variance. We now use these insights to return to the questions we posed earlier.

4.1.1 Can behavior modification mask poor predictive algorithm performance?

BBD has been shown to be very noisy, sparse, and high-dimensional (De Cnudde et al., 2020). Behavior modification
can improve ẼPE by countering the predictive algorithm’s bias as well as by reducing the noise variance. This
means that poor performance of a predictive algorithm, due to the algorithm’s bias and variance, and/or due to
the data noisiness, can be masked by do(B). Therefore, customers of BBD platforms wanting to achieve the
(manipulated) prediction accuracy level demonstrated by the platform, must purchase both the predictions and
the ability to apply behavior modification similar to the one performed by the BBD platform. Purchasing the
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predictions alone might uncover a much weaker predictive performance when deployed to non-manipulated users
(or by applying a less effective modification).

4.1.2 Can one infer the counterfactual EPE from the manipulated ẼPE?

The difference between the two quantities of no-manipulation EPE and behavior-modified ẼPE involves CATE,
bias(f̂), σ, and σ̃.14 Some of these quantities can be estimated (e.g., CATE), while others are more difficult, if
impossible. Hence, it is unlikely the no-manipulation predictive power can be ascertained from the manipulated
ẼPE. This means customers of BBD platforms who want to evaluate the no-manipulation predictive power will
need to obtain (purchase) information about the estimated EPE at the time of algorithm testing.

4.1.3 Can clients detect the manipulation via A/B tests?

Platform clients who regularly run A/B tests on the platform are not likely to detect the error minimization strategy,
because of the random allocation of users in an A/B test. This randomization spreads B-“affected" users across the
A and B conditions, and therefore the difference between the group averages will cancel out the B effect. The A/B
test statistic and its statistical significance are therefore not impacted by B.

4.1.4 What are the roles of personalized prediction and personalized behavior modification in error
minimization?

An ideal behavior modification reduces not only the average magnitude of the errors, but also their variability so
that errors are more consistent across users. This highlights the role of personalized prediction that companies
now invest in: a user’s personal ~xi data is used to select the best modification do(Bi) = h(Bi, ~xi), where the
range of Bi choices includes not only different stimuli15 (e.g. different content display), but also different types of
reinforcement (e.g. positive reinforcement such as rewards, recognition, praise, vs. negative reinforcement such as
time pressure, social pressure). For example, Kosinski et al. (2013) showed how Facebook users’ Likes can predict
their psychological attributes, ranging from sexual orientation to intelligence, and suggested that including such
attributes can improve personalized interventions.16 Personalized interventions are also becoming more powerful
with the introduction of reinforcement learning, which personalizes the system’s behavior by using users’ traits (~xi)
combined with their implicit feedback (den Hengst et al., 2020).

Personalized predictions have the potential to minimize ẼPE more equally both within a certain user profile
~x and across different user profiles, by lowering conditional bias via manipulating CATE, and by shrinking the
(manipulated) outcomes’ variance.

Finally, the bias-variance decomposition highlights the important role of a large training dataset in minimizing
the predictive algorithm’s variance V ar(f̂). Since predictive models trade off bias and variance, in the behavior
modification context low-bias algorithms are advantageous in terms of requiring a smaller manipulation effect to
minimize EPE. One avenue for further research is the effect of behavior modification on classification accuracy (for
binary outcomes), where the effects of bias and variance on EPE are multiplicative rather than additive, and the
literature reports conflicting results on their roles (e.g. Friedman, 1997; Domingos, 2000).

4.2 Humanistic and societal implications

Behavior modification, now pervasively applied by BBD platforms to their “data subjects", is geared towards
optimizing the platform’s commercial interest, often at the cost of users’ well-being and agency. “Persuasive
technology", a design philosophy now implemented on platforms from e-commerce sites and social networks to
smartphones and fitness wristbands, aim at generating “behavioral change" and “habit formation", most often
without the user’s knowledge or consent (Rushkoff, 2019). This application of behavior modification to platform
users diverges from application to employees for increasing the organization’s productivity and workers’ job
satisfaction. And, clearly, such use diverges from the original intention of behavior modification procedures “to
change socially significant behaviors, with the goal of improving some aspect of a person’s life" (Miltenberger,
2015).

Given the often conflicting goals of data subjects and the platforms that collect and use their data as well as
manipulate their behavior, it is important to introduce these causal mechanisms into the predictive environment,

14ẼPE − EPE = σ̃2 − σ2 + CATE2 + 2× CATE ×Bias(f̂)
15“People who do a lot of research on products may see an ad that features positive product reviews, whereas those who have

signed up for regular deliveries of other products in the past might see an ad offering a discount for those who “Subscribe &
Save.”" www.nytimes.com/2019/01/20/technology/amazon-ads-advertising.html

16“online insurance advertisements might emphasize security when facing emotionally unstable (neurotic) users but stress
potential threats when dealing with emotionally stable ones." Kosinski et al. (2013)
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so that our statistics, machine learning, and computational social science communities can study their technical
properties and implications. By introducing and integrating causal notation into the predictive terminology, we
can start studying how behavior modification can create “better" predictions. This allows examining the effects of
different behavior modification types, magnitudes, variation, and directions on anticipated outcomes.

Conclusion

Behavior modification can make users’ behavior not only more predictable but also more homogeneous. However,
this apparent “predictability" is not guaranteed to generalize when the predictions are used by platform clients outside
of the platform environment, or within the platform with a different or no behavior modification strategy. Outcomes
pushed towards their predictions can also be at odds with the client’s intention, and harmful to the manipulated
users. While platforms have the incentive and capabilities to minimize prediction errors, such minimization might
even occur without the platform’s knowledge, due to automated personalization techniques that combine users’ data
and their implicit feedback. It is therefore critical to have a useful technical vocabulary that integrates intentional
behavior modification into the correlation-based predictive framework to enable studying such contemporary
strategies.
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Appendix

A Differences between A/B testing, uplift modeling, and error minimization

As mentioned earlier, behavior modification techniques are used by BBD platforms for two purposes other than
reducing prediction error: for estimating the overall effect of a behavior modification intervention (A/B testing), and
for predicting personalized user reactions to a behavior intervention for precision targeting (uplift modeling). We
now show how these two purposes and error minimization are different from each other. Table 2 summarizes the
key differences.

Table 2: Differences between A/B testing, uplift modeling, and error minimization

A/B testing Uplift modeling Error minimization
Business goal Test effectiveness of new de-

sign/feature
Effective user targeting Increasing value of predictive

products
Analysis goal Test average effect of new fea-

ture: ATE = 1
nB

∑nB

i=1 ỹi −
1
nA

∑nA

i=1 ỹi

Predict uplift for each user i:
uplifti = ˆ̃yi,do(B=1) − ˆ̃yi,do(B=0)

Minimize overall predic-
tion error: e.g. MSE=
1
n

∑
i (ỹi − ŷi)

2

Sequence of
events

intervention→ estimation intervention→ prediction prediction→ intervention

Intervention
levels

do(B = 0), do(B = 1) do(B = 0), do(B = 1) do(Bi) (personalized)

X used for not used, or for CATE training predictive model(s) training f̂ and personalizing
do(Bi)

A.1 Estimating the overall effect of a behavior modification intervention for product improvement (A/B
testing)

BBD platforms try to improve their products and users’ experience on an ongoing basis, from updating website
design to introducing new features, new ad layouts, marketing emails, and more. To do this, they employ A/B tests,
which compare the impact a new test design/feature (version B) vs. an existing one (version A). Amazon, Microsoft,
Facebook, Google and similar companies conduct thousands to tens of thousands of A/B tests each year, on millions
of users, testing user interface changes, enhancements to algorithms (search, ads, personalization, recommendation,
etc.), changes to apps, content management system, and more (Kohavi and Longbotham, 2017; Kohavi and Thomke,
2017). The A/B test is a simple randomized experiment comparing the average outcome of a treatment group to that
of a control group. Suppose that version A is the current website functionality (B = 0), and version B is a new
feature (B = 1). The A/B testing process is as follows:

1. randomly assign nA users to condition A (do(B = 0)) and nB users to condition B (do(B = 1)).

2. measure the outcome for users in condition A (ỹi, i = 1, . . . , nA) and in condition B (ỹi, i = 1, . . . , nB).

3. estimate the Average Treatment Effect ATE = 1
nB

∑nB

i=1 ỹi −
1
nA

∑nA

i=1 ỹi.

4. use statistical inference and effect magnitude estimates to determine whether the new feature adds value.

When there is interest in the ATE for certain subgroups, such as by the user’s language, steps 3-4 can be supplemented
with CATE. In summary: A/B tests are used to determine the effectiveness of a new behavior modification feature
compared to an existing one. This is done by comparing the average outcome of the two randomly assigned do(B)
groups, and estimating and testing ATE or CATE.

A.2 Predicting personalized behavior modification effects for maximizing conversion/revenue (uplift
modeling)

Uplift modeling, also known as differential response analysis, or true lift modeling (Rzepakowski and Jaroszewicz,
2012; Radcliffe and Surry, 2011), is used in precision marketing and in political persuasion for identifying people
who will modify their behavior (e.g. purchase a product, or vote for a candidate) conditional on being given a
particular treatment (e.g. receiving a coupon, or a phone call), assuming the treatment can also cause a negative
outcome for some people. In uplift modeling, an intervention is applied to a randomly sampled group of people. The
resulting data, along with data from a control group, is used to build predictive model(s) for predicting a person’s
change in response, or uplift due to the intervention. The predictive model(s)17 produce predicted outcomes under

17Uplift modeling includes a two-model approach, where models of the form ỹ = g(X) + ε̃ are trained separately on the
treatment and control groups, and a single-model approach that trains a single model on the combined dataset (ỹ = h(X,B)+ δ̃).
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do(B = 0) and do(B = 1), which are then combined to obtain uplifti = ˆ̃yi,do(B=1)− ˆ̃yi,do(B=0). Finally, the uplift
values are used to determine which users to treat (do(B = 1)) and for which to avoid treatment (do(B = 0)). This
process is as follows:

1. randomly assign nA users to condition A (do(B = 0)) and nB users to condition B (do(B = 1).

2. measure the outcome and predictors for users in conditions A ({ỹi, ~xi}, i = 1, . . . , nA) and B
({ỹi, ~xi}, i = 1, . . . , nB).

3. train a predictive model of ỹ on X,B (e.g., Lo, 2002).

4. use the model to predict ỹi,do(B=1) and ỹi,do(B=0), and compute uplifti = ˆ̃yi,do(B=1) − ˆ̃yi,do(B=0).

5. Based on uplift, determine who should be treated.

A.3 Behavior modification for minimizing prediction error

The process of minimizing prediction error can be summarized as follows:

1. collect observational predictors X,B and outcome ~y for a sample of n users.

2. build a predictive model ŷ = f̂(X,B). Compute personalized predicted scores ŷi = f̂(~xi, Bi) for each
user.

3. apply behavior modification do(Bi) to each user to push their outcome towards their predicted value ŷi.

4. compute manipulated prediction errors ỹi − ŷi, and summarize them to demonstrate impressive predictive
power.

B Derivation of ẼPE bias-variance decomposition (Equation 7)

The derivation for Equation 7 (bias-variance decomposition under do(B)) is as follows. For convenience, we use f
and f̂ to denote the no-manipulation true function and its estimated model. For the manipulated scenario, we use
fdo to denote the true function under behavior modification do(B).

For a new observation with inputs ~x and manipulated outcome y|do(B), ~x, we can decompose the expected
prediction error as follows (for convenience, we drop subscript i):

ẼPE(~x) = E
(
y|do(B), ~x− f̂(~x)

)2
= E(ỹ − f̂)2

= E(ỹ − fdo + fdo − f̂)2

= E(ỹ − fdo)2 + E(fdo − f̂)2 + 2E(ỹ − fdo)(fdo − f̂).

(8)

These three terms can be further simplified. The first term can be simplified by noting that ỹ = fdo + ε̃:

E(ỹ − fdo)2 = E(ε̃2) = σ̃2. (9)

The second term can be written as:

E(fdo − f̂)2 = E
(
fdo − E(f̂) + E(f̂)− f̂

)2
=
(
fdo − E(f̂)

)2
+ E

(
f̂ − E(f̂)

)2
=
(
fdo − E(f̂)

)2
+ V ar(f̂)

(10)

because the cross product is zero:

2E
(
fdo − E(f̂)

)(
E(f̂)− f̂

)
= 2

(
fdo − E(f̂)

)(
E(f̂)− E(f̂)

)
= 0. (11)

We can further write Equation 10 as a function of the bias and variance of f̂ :[
fdo − E(f̂)

]2
+ V ar(f̂) = E

[
fdo − f + f − E(f̂)

]2
+ V ar(f̂)

=
[
CATE +Bias(f̂)

]2
+ V ar(f̂).

(12)
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Finally, using the independence of the new observation’s prediction error ε̃ from the prediction f̂ based on the
training data (E(ε̃f̂) = 0), the third term can be shown to be zero:

2E(ỹ − fdo)(fdo − f̂) = 2E(ε̃)(fdo − f̂) = 2fdoE(ε̃)− 2E(ε̃f̂) = 0. (13)

Therefore, we can write ẼPE from Equation (8) as:

ẼPE(~x) = E
(
y|~x, do(B)− f̂(~x)

)2
= σ̃2 +

[
CATE +Bias(f̂)

]2
+ V ar(f̂).

(14)
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