

The Future is Already Here The Machine that Would Print the Cell Phone

Digital AME board vs. Analog PCB processing

Process of using Additive Manufacturing Technology (AME) for manufacturing of Functional Electronic Circuits, by direct printing of both Dielectric and Metal Elements – **A Digital Process**

Printed Circuit Board (PCB) and the other devices, like interposers, packages, IC manufactured by solid state technology processes – An Analog Process

AME machine- real 3D printing tool

DRAGONFLY AME MACHINE

SYSTEM IN PACKAGE

- Multilayer thick print thousands of layers, up to 12 mm
- o Embedded electronic and optical components

RAPID PROTOTYPING IN HOUSE

Months > days>hours

INNOVATIVE RAPID PACKAGING

o Compact, lightweight and robust package

PRINTED ELECTRONICS COMPONENTS

 High Accuracy Capacitors, Inductors and transformers Integrated in the board

DEFENSE, AEROSPACE, MEDICAL AND AUTOMOTIVE

- o Light weight
- Integrated design
- No outgassing

Printed LP X-ray of Printed LP

PCB vs. AME and SiP boards

0

3D Printed Board

System in Package (SiP)

0

RF/Electronics components assembling

SiP process flow

0

-0

How does it work?

- The objects are built up, layer by layer, through full stack thickness
- o Inject printheads prints the dielectric and conductive layers
- Conductive layers and dielectric layers are printed simultaneously
- o Lines, pads, filled vias, hole vias, inductors, capacitors, cavities,
- Just one manufacturing step: No need for PR coating, photolithography, etching, pressing, electroplating!

Inks: Dielectric (DI) and Conductive Ink (CI)

Silver Nanoparticle Conductive Ink AgCite™

Conductivity (Silver nano particles) (S/m) at 20 °C] *up to 60% bulk Silver	15x106 – 30 x106
Tg (DMA, 10 Hz, tan delta)	162
Decomposition temp. (Td 5%) (TGA)	351
Flexural strength (crosswise) N/mm2	106.4
Dielectric breakdown (thickness 0.6mm) KV	40.3

UV Curable Dielectric Acrylates Ink

	Dielectric	Tangential
	Constant (Dk)	loss (Df)
200MHz	2.80	0.000
500MHz	2.81	0.004
1GHz	2.81	0.006
2GHz	2.80	0.011
5GHz	2.78	0.012
10GHz	2.76	0.013
15GHz	2.75	0.013
20GHz	2.78	0.012

 \circ

Design Rules – Basic Data

- Minimum dielectric thickness: 35um +3um step
- Minimum metal plate thickness: 17um+0.3um step
- Width trace: 108um
- Release between traces: 108um
- Maximum number of dielectric layers: 55
- Minimum Via diameter: 200um
- Minimum Through-Hole Via: 400um
- Max Board dimension: 160x160x3mm^3
- Min BGA pitch: 0.5mm

Applications

EXAMPLES: Boards

EXAMPLE: RF antennas and components

Phase Array Antenna

Tunable Antenna

 \circ

Co-planar line

Strip line

Printed LPF

EXAMPLE: Transformers

In Board Power DC-DC Up Voltage Converter Example 5V to 20V

E5

<u>No-Core</u> Weight - <0.5g Inductance – 0.2uH-4uH

E5 Ferrite Core (N27 Ferrite) Weight - <1g Inductance - 0.27uH-1000uH Interwinding Capacitance -5pF E14.5

<u>No-Core</u> Weight - <0.5g Inductance – 2.5uH-50uH

E5 Ferrite Core (N27 Ferrite) Weight - <3g Inductance – 1.05uH-34mH Interwinding Capacitance – 18pF

AC- AC Transformer with ferrite core

EXAMPLE: Capacitors

Electrifying Additive Manufac

Nano Dimension Confidential and Proprietary

EXAMPLE. Vertically Stacked ICs

Stacked ICs have a higher circuitry density than traditional PCBs by allowing ICs to be mounted and interconnected on top of each other.

EXAMPLE: Side mount/contact

- · Enables the use of an area not common for PCB components
- Enables the creation of customized small PCBs that can be inserted into a socket

Figure 1 X-ray view of a) inserted, and b) side mounted components soldered to vertical contacts manufactured as part of the PCB additive manufacturing technology in the DragonFly LDM[™]

EXAMPLE: Low pass filter

17

Printed LP

X-ray of Printed LP LPF uses AME capacitors fabricated simultaneously inside the AME board together with strip lines.

The AME capacitor and the strip line can be placed on any layer or on different layers in the AME board X-ray of LPF capacitors and transmission strip lines

S21 - AME transmission and capacitors vs AME transmission with SMT

THANK YOU Dr. Joseph Kaplun CTO of applications, processes and materials joseph@nano-di.com Joseph.Kaplun@gmail.com Mobile: 972526126132 Follow us:

