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Abstract 

The move towards advanced manufacturing and industry 4.0 is fed by increased demand for 

speeding up innovation, increasing flexibility, improving maintenance, becoming more 

customized while saving on total cost of operations. The move is accompanied by increased 

dependence on virtual product and process development, including data driven process and 

product knowledge. Other characteristics affecting modern design, manufacturing as well as 

maintenance, include big data intelligence in product, process and maintenance, globally 

competitive operations, added manufacturing, flexible manufacturing and robotics, sensor 

technology, smart value/supply chains and industrial information technology backbones. 

This paper is about surrogate models, also called digital twins, that are providing an important 

complementary capacity to physical assets. Digital twins capture past, present and predicted 

behavior of physical assets. Digital twin models are updated periodically to represent the 

current state of physical assets. The type of curated information on the state of physical 

asset’s history depends on how digital twin are used. For example, if a digital twin is used for 

fault classification, the history captured can be operational data from specific equipment in 

healthy and faulty state.  

We provide here a review of digital twins, with an emphasis on Industry 4.0 applications. The 

paper maps the background, the current state of the art and the future directions of digital 

twins in a wide range of process engineering, product design and analytic disciplines.  

Keywords: Digital Twins, Simulations, Model Calibration, Condition Based Maintenance, 

Process Control, Information Quality, Industry 4.0. 

1. Introduction 

The term “digital twin” has been defined in different forms including as a high-fidelity 

simulation, a virtual organization, a virtual reality representation and an emulation facility. Its 

uses are focused, among other applications in optimization, monitoring, diagnostic, prognostic 

and prescriptive capabilities (Kenett et al, 2016). It originated with the concept of a digital 

factory (Jain and Shao 2014).  The definition we use here is that a digital twin is the digital 

representation of a physical asset or system across its life-cycle using operational real-time 

data and other sources, adopted to drive business outcomes.  

 

The digital twin concept has been implemented by leading manufacturing companies. Ford 

Motor Company enhanced assembly line performance by evaluating and optimizing the 

designs using digital twins (IMT 2013). Volvo Group Global (2017) showed how to validate 

changes using a digital twin. General Electric developed digital twins of aircraft enginesab.  

Major commercial software vendors support development of virtual factories via integrated 

 
a https://www.youtube.com/watch?v=gE0Z-lQdMtI 
b https://www.ge.com/research/offering/digital-twin-creation 

 

https://www.youtube.com/watch?v=gE0Z-lQdMtI
https://www.ge.com/research/offering/digital-twin-creation
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solutions for product, process and system design, simulation, and visualization (Tolio et al. 

2013).  A standardization of process control technologies is provided by ANSI (2010). On the 

other hand, Jain et al. (2001) attempted to implement a multi-resolution digital twin but found 

it highly challenging due technology limitations and information availability.  

 

Virtual data management, automatic model generation, static and dynamic simulation, and 

integration and communication are paramount to realizing a digital twin (Choi et al 2014). 

However, most software tools are, in general, not supplied with these capabilities making it a 

challenge to develop a digital twin. There are efforts addressing different aspects of the 

challenge. To enhance conventional simulations for a digital twin, Bal and Hashemipour 

(2009) use Product-Resource-Order-Staff Architecture for modelling controls while the Quest 

simulation tool models the physical elements. To integrate models and enhance 

communication, Hints et al. (2011) developed a software tool named Design Synthesis 

Module. Debevec et al (2014) use a simulative model to test and improve the schedules before 

implementation in the real factories of small and medium size enterprises. For production 

planning, Terkaj at all (2015) present an ontology for a virtual factory or digital twin to aid 

planning decisions. 

 

The recent concept of ‘Industry 4.0’, or the fourth industrial revolution, includes Cyber-

Physical Systems (CPS) as a key component. The function of CPS has been identified as 

monitoring physical processes and creating a virtual copy of the physical world to support 

decentralized decision-making (Mario et al 2015). The ‘virtual copy’ and ‘virtual plant 

models’ discussed in that paper is in the context of Industry 4.0 and matches the concept of 

twining discussed in this paper. 

 

In Industry 4.0 applications, one sees a growing role of twinning a physical plant with 

simulation-based surrogates. A digital twin is a simulation model which replicates a physical 

object or process. By means of sensors, real-time data about physical items are collected and 

used to duplicate the physical state of the item and the impact of ongoing changes (Kenett et 

al, 2020). Digital twins include five main components: physical part, virtual part, connection, 

data, and service. The virtual and physical parts exchange information collected through the 

connection part. The interaction between the human and the digital twin is provided by the 

service part. Digital twins are traditionally used to improve the performance of engineering 

devices, like wind turbines or jet engines. In this context, they also serve to model systems of 

devices, to collect and analyze information about processes and people, and to help solve 

complex problems. Such digital twins provide powerful planning and troubleshooting 

capabilities and statistical methods play a significant role in both the design and analysis of 

simulations and computer experiments on digital twin platforms.  

 

Simulation models of systems and processes are increasingly used in order to shorten time to 

market, reduce design, operations and maintenance costs while improving quality. As an 

example, consider the PENSIM simulation software modeling penicillin production in a fed-

batch fermentorc. The model includes variables such as pH, temperature, aeration rate, 

agitation power, and feed flow rate of the substrate. It is used in monitoring and process 

trouble shooting activities. Such simulators are used, for example, in fault diagnosis of 

semiconductors, biotechnological and chemical production processes1. They are also used for 

research and educational purposes (Reis and Kenett, 2017).  

 

 
c https://nl.mathworks.com/matlabcentral/fileexchange/49041-industrial-scale-penicillin-simulationv2 

https://nl.mathworks.com/matlabcentral/fileexchange/49041-industrial-scale-penicillin-simulationv2
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A digital twin is a power full infrastructure for the condition-based maintenance (CBM) 

approach which is based on the concept that maintenance operations should be done only 

when necessary (Gruber et al, 2020). The purpose of CBM is to prevent a reduction in the 

effectiveness of a system which can evolve to a total failure of the system. It is aimed to 

reduce the maintenance costs by enabling planning of maintenance operations in advance and 

replacement of the damaged component. For effective CBM, prediction of the remaining 

useful life (RUL) of each component is required. Evaluation of the components’ RUL 

requires not only diagnosis of the fault existence, but also the estimation of the fault location 

and severity. 

Simulating the behaviour of a system, with computer software, is a cost-efficient approach to 

knowledge building. Computer experiments differ from physical experiments since the output 

of a computer run is deterministic, unaffected by measurement error and experimental noise. 

On the other hand, like with physical experiments, models and knowledge derived from 

computer experiments require validation.  

 

In this paper we provide a wide-angle perspective of digital twins, simulations and computer 

experiments, highlighting areas of interest for practitioners, researchers and educators in the 

context of Industry 4.0. we cover several complementary areas: i) integration of physical 

systems and computer simulations, ii) a case study of a dynamic model for gear fault 

diagnosis used to develop diagnostic algorithms, iii)  examples of digital twins, iv) calibration 

of digital twins and v) the role of digital twins in training and education. A final section, with 

discussion and extensive references, concludes the paper.  

 

Digital twins complement or substitute physical experiments with software-based simulation 

experiments, Santner et al (2003), Kenett and Zacks (2014). Digital twins permit building 

knowledge of a physical system and supporting decision-making in the design and monitoring 

of such systems, via simulations. A physical experiment consists of executing real life 

experiments where modifications to input variables are taking place, see Figure 1. Similarly, a 

digital twin can be used to run experiments by a number of runs of a simulation code where 

factors are parametrized as a subset of the code's inputs.  

 

 
 

Figure 1 – Representation of the behavior of a cyberphysical system in terms of inputs 

(controlled variables and noise variables) and outputs (or responses). 
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Some examples of limitations in physical experiments that are overcome in digital twins are: 

•  Inability to measure the response. For instance, time evolution of internal stress 

during a material test or nanoscale phenomena. 

• Topological complexity. For example, microsystems in semiconductor industry with 

thousands of interacting components. 

•  Non-reproducibility of experiments. For example, in customer interactions and supply 

chain systems. 

Typically, the complexity of physical systems does not lead to a simple analytic formula that 

describes in detail the phenomena under study, and a simulation is the only available tool for 

experimentation. In order to overcome difficulties in carrying out physical experiments, one 

can resort to a digital twin that provides the option of extensive experimentation and to 

collecting information that would otherwise not be possible to collect. Complex simulation 

models are, for practical purposes, black boxes that work on a what-if basis. The proactive 

experimentation is a way to extract usable knowledge by modelling digital twin outputs.  

 

A standard goal of a digital twin is optimisation of the system performance. In this case, 

computer experiments are used to create a fast-to-compute “copy” of the simulator used for 

the optimisation, see Figure 2. Specifically, given a simulator f,  digital twin methods search 

for an approximate model g which mimics the behavior of the simulator but runs hundreds or 

thousands of times faster. 

 

 
 

Figure 2 – Representation of the behavior of a digital twin and the use of emulators. The 

emulator y = g(x) approximates the model y = f(x) using smooth functional relationships in 

order to best represent the model and be computationally fast. 
 

Digital twin simulation experiments can be combined with physical experiments. Combining 

digital twin simulations with physical experimentation validates both models and the digital 

twin code. It allows experts to create and calibrate models used in optimization applications 

(Romano et al, 2004). In the next sections we provide a case study of gear fault diagnosis 

3. A dynamic model for gear fault diagnosis 

This section is a case study of a subsystem which is prevalent in manufacturing systems and 

systems in general. a rotating machine with a gear box. It is focused on monitoring, diagnostic 

and prognostic capabilities typical to have in digital twins.  
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3.1 Digital twin of a rotating machine 

Common health monitoring methods for rotating machines are based on signal monitoring, 

usually acceleration signals and recently strain sensing (Alian et al (2019). These methods are 

designed to alert users on damage in the monitored component. However, the dynamic 

behavior of the component, with and without a fault, needs to be studied to certify the 

diagnostic capabilities. A relation between the dynamic behavior and its expression in the 

vibration signal should be created for determination of the defect severity. Using a 

combination of models and simulations contributes to the understanding of how the system 

functions when there is a fault and, in addition, to explain why and how the fault is expressed 

in the vibration signature. These models are used during the life cycle of a machine, as part of 

the machine’s digital twin, to diagnose the machine condition, to optimize the operation such 

that its key performance goals are achieved 

 The methodology presented here is based on understanding the physics of the machine 

components and their expression in the vibration signal in the presence of a fault. Each 

rotating machine component is analyzed separately. It is assumed that isolation of the signal 

excited by each component is part of the preliminary signal processing task. 

 

Figure 3: The rotating machine model development and validation approach (Madar et al, 

2019). 

 

The methodology is based on several stages as described schematically in Figure 3. First, a 

general dynamic model of the system under investigation is built. The dynamic equations are 

solved using numerical tools which describe the behavior of the component in healthy 

conditions as well as with faults. Each model undergoes validation and verification processes 

[(Madar et all (2019)) before the results are interpreted. The simulated signals from the 

models establish the physical understanding of the process occurring in different working 

modes. Additionally, prominent events in the simulated signal are investigated. Various 

experiments are performed, and the measured signals are analyzed. The insights from the 

simulation allow a better interpretation of the experimental signals and development of 

diagnostic and prognostic algorithms, especially, the condition of the system using Condition 

Indicators (CIs). Similarly, the experimental signals are used to validate the model and to 

learn about the robustness of the model limitations (Madar et all (2019), Kogan et all (2018) 

and Gazizulin et all (2019)). 
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In the current example, a nonlinear dynamic model was developed in order to describe the 

vibration response of a gear system in the presence of faults and surface roughness (Dadon et 

all (2018). The gear model considers the two gears, as well as their supporting system. The 

reason for modeling all the components is that the phenomena which occurs in the different 

system components affects the gear dynamics, and, as a result, also the vibration signal. In 

addition to the gears, the model includes simulations of bearings, shafts, a motor, and a brake. 

The components in the modeled system were assumed to be rigid bodies. The two shafts were 

assumed to be of finite torsional stiffness and infinite bending stiffness. The interaction 

between teeth meshing was modeled as a network of linear springs, which simulate the 

contact across the tooth face. The stiffness of each spring is variable and depends on the 

angular position of the gears. Other interactions between the rigid bodies were modeled as 

linear springs with constant stiffness. In the dynamic model, the clearance between meshing 

teeth is not considered. This is acceptable due to the distance to the system resonances. 

The model predicts the gear system vibrations signature of healthy and damaged gears. The 

mesh properties, such as those related to gear faults and surface roughness, are considered in 

the gear mesh model. The surface roughness is given as a displacement-excitation function 

along the pressure line.  

3.2 The tooth surface 

The tooth surface quality of the gear has an important effect on the ability to detect faults via 

the vibration signal. For the case of a local fault, the expression of the fault in the measured 

vibration signal differs from its expression in the simulated signal. Modeling the surface 

roughness by adding profile errors to the tooth face contributed to the understanding of the 

difference between the measured and simulated signal (Figure 4). The effect of the gear 

surface quality on the generated signal with and without the fault sheds light on the possibility 

to detect a local fault. In the measured signal, the impact generated by the local fault is 

masked by the gear profile errors and, therefore, is undetectable. However, when a high-

quality gear was tested experimentally, the local faults were clearly visible in the vibration 

signal. In the simulations of the high-quality gears, the fault was obviously observable starting 

from the first fault severity, where for the low-quality gears the local fault was not detected. 

This insight was verified experimentally on gears of different quality. 

For a specific precision grade, the manufacture produces the surface with predefined 

tolerances, the gearwheel surface roughness varies in the tolerances, and gears from the same 

production line can still appear differently in the vibration signal. The model allows the 

running of various simulations of the gear with random profile errors in the tolerances defined 

by the manufacturer. This capability generates scatter in the results without changing the 

system or the operating conditions. Scattering of the results makes the model more realistic, 

contributing to testing different condition indicators on the scattered results that characterize 

the fault. Additionally, the efficiency of signal processing methods which better emphasize 

the local faults can be tested. The main insight is that the tooth surface quality has a profound 

effect on the vibration signal and, consequently, on the capability to detect faults. 
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Figure 4: Simulated vibration cycle of the driving wheel. (a) Without profile errors; (b) With 

profile errors. 

 

The model allows to check the possibility of identifying faults in the gears. The common local 

faults that we considered are, spall-like faults and chipped, broken, and missing teeth. 

Periodic Hertzian contact stresses on a tooth’s surface produce detachment of small chunks of 

material. A broken tooth is caused by excessive impact load or unstable load which causes a 

part of the tooth edge to separate from it. Cases of broken teeth can be sectioned into three 

different grades of severity. The three states influence the involute profile differently. The 

first is a chipped tooth – non-uniform removal of material from the tooth edge. During 

meshing of the defected tooth, the involute profile is not altered throughout the tooth. The 

second state is a broken tooth, i.e. the tooth height is lowered, influencing the involute profile. 

The last state is a missing tooth, when a substantial amount of material is removed from the 

tooth. In that stage, the height of the remaining tooth does not matter. Each of these cases was 

tested and simulated. The model was validated by comparing the experiment results to the 

simulations.  A database of simulations for gears with different local faults was built. For each 

local fault, several variables were examined, testing different severity levels, under different 

working conditions, with different surface qualities. The database serves to study the 

diagnostic capabilities systematically. 

Currently, there are a variety of CIs to diagnose gear faults. The capability of a CI to detect a 

fault does not necessarily indicate that this CI will work on the same fault when the system 

operating condition is changed. Moreover, the same CI may be appropriate for different type 

of faults in different conditions. Hence, it is necessary to understand the limits of each CI, i.e. 

the type and the severity of faults that the CI can reflect. Extensive experiments (including 

different rotating speeds, loads, surface qualities, sizes of faults, and repetitions) are required 

to set boundaries for each CI. The usage of a validated model to simulate different cases and 

to test the CI on the simulations provides a more effective solution. Using simulations from a 

validated model, it is possible to find the characteristics of each local fault in the vibration 

signal. Examining each of the CIs on the simulation results indicates on the best CI or 

combination of CIs for each local fault. Then the results can be generalized and employed in a 

twin model to diagnose the health of gears during the life of the machine. 

Many insights about the ability to detect different faults have emerged from this study. As 

expected, the best results of the CIs were in the difference signal due to removal of the signals 
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irrelevant to the faults. A gear with a spall-like fault which does not go throughout the whole 

tooth is very challenging to detect because its effect is a small change in the frequency 

response for a very short period of time during the mesh of the damaged tooth. However, 

when the spall-like fault is all along the tooth, its presence is visible in the synchronous 

average signal because of the contact loss in the involute profile of the gear i.e. the two 

meshing teeth are in contact, but the location has changed. For this case, the fault can be 

detected using the classical CIs, but the severity of the defect cannot be determined.  

3.3 Installation errors 

Modeling local faults in gear transmission and studying their effect on the vibration signature 

of a gear transmission contributed to the development of a new algorithm for separation 

between local and distributed faults. Traces of a local fault may be obscured by distributed 

transmission defects, such as eccentricity or misalignment, whereas these phenomena may 

appear in parallel with the local fault. 

Using the dynamic model, we simulated the distributed and local faults. Simulations of a gear 

transmission with different eccentricity levels have been conducted (Koen et al (2016)). Here, 

we examined three cases of simulated signals to understand the influence of the eccentricity 

on the vibration signal. The local and distributed fault combination in the vibration signal 

caused concealment of the local fault. Insight from the investigation of the simulated signals 

enabled us to develop and test a method to reduce the distributed fault effect masking the 

traces of the local fault. A new algorithm, which calculates a new adaptive difference signal, 

was demonstrated to emphasize the local tooth fault in the presence of a distributed fault that 

masked the effect of the local fault Koen et al (2016)). 

In this section, we test the ability to detect different faults based on vibration signals using 

insights from the gear dynamic model. The main insight is that the tooth surface quality has a 

significant effect on the ability to detect faults via the vibration signal. By considering the 

tooth surface quality in the model, a random factor is added to the simulations which causes a 

scattering in the results. This addition contributes toward understanding the limits and 

reliability of fault detection. Detecting a partial spall or a chipped tooth is difficult, even if the 

local fault is the only defect in the system because the effect of those faults on the vibration 

signal is a small change of frequency for a short period of time. In general, if there is a 

continuous contact along the involute profile, i.e. the involute profile is not altered, the 

vibration signal does not change significantly compared to the healthy case. However, when 

the involute profile is changed as in the cases of spall throughout or a broken tooth, the 

displacement of the gear will be expressed in the vibration signal, enabling fault detection. 

A database of signals from simulations obtained from the experimentally validated model was 

established. The database was used to test classic and new CIs on different types of faults in 

order to define their ability to detect different faults. Using the dynamic model, it is possible 

to explain why certain indicators are ineffective and some are more relevant for each case. In 

ongoing research, the database from the simulations is being used for sensitivity tests by 

studying the effects of different parameters on the vibrations.  

This model and the data base can be used as infrastructure for constructing a gear twin model. 

This is an example how a validated model can be used to construct an individual realistic 

model twin for a complicated mechanical component that might deteriorate or be damaged. 
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This model may be very useful when moving to Condition Based Maintenance (CBM) in a 

critical system like airplane engine. 

4. Other examples of digital twins 

This section presents a variety of applications of digital twins in industry. We start with the 

behavior of a robot arm, whose shoulder is fixed at the original in a plane, the reference plane, 

see  Pistone and Vicario, 2010. The robot arm is made up of a number m of segments; each 

segment has a length Li and is at an angle i, i = 1, 2, …, m, with respect to the horizontal 

coordinate axis of the plane. The controlled factors are the 2m variables lengths Li [0, 1] and 

angles i [0, 2]; the response y is the Euclidean distance between the end of the arm and 

the origin of the plane.  

Another example is a simulation model of an analog integrated circuit Lo et al, (2000). The 

input variables are the different circuit parameters (transistor characteristics) and the response 

is the measurement of the circuit performance, such as the output voltage. The interest of the 

design engineers is to study the variation of the output current due to external and internal 

noises. and find the best combination of circuit parameters so that the output response 

variability is minimized. In yet another example, a finite element model (FEM) is used to 

design an engine block and a head joint sealing assembly in automotive internal combustion 

engines (Bray, 1981). For an introduction to FEM see Zienkiewicz, 1971. This type of design 

is quite complex since multiple components (block and head structures, gasket and fasteners) 

are involved, and the geometry is convoluted if sealing of combustion products, high pressure 

oil, oil drain, and coolant have to be maintained properly. The selection of the parameter 

setting in the assembly may not be analyzed separately, owing to the presence of strong 

assembly interaction effects. In addition, design decisions for this system must be made 

during the product development stage, prior to the availability of a physical prototype. FEM is 

used to capture the effects of the three-dimensional part geometry, the compliance in the 

components, the nonlinear gasket material properties and contact interface among block, 

gasket, head, and fasteners.  

Digital twins have been used to simulate of the Rockwell C hardness test to assessing resistance of 

materials: (Romano et al, 2000). In such tests an indenter is pressed into the material and the depth of 

penetration is measured. After performing extensive numerical experiments, a few experimental runs 

were conducted in the lab to validate the digital twin model. Measurement uncertainty obtained by 

physical experiments conducted in the lab closely matched that obtained by the simulation experiment. 

A thermal spraying process where the in-process parameters cannot be measured and soft 

sensors derived from a digital twin is presented in Rudak et al (2014). Soft sensors are sensor 

type data derived from a model. These are used when data cannot be collected, like in the 

thermal spraying process, or expensive to collect. 

A combination of physical and simulated experiments to fine-tune predictions for the 

manufacturing process injection moulding process outputs is used in Villarreal-Marroquın  et 

al (2016), see also Reese et al (2004). The authors design both physical and simulation 

experiments. The values of the performance measures are estimated at a grid of process 

control variables, and a set of predicted Pareto solutions is identified using non-dominance 

criteria. Refinements of the obtained solutions are also proposed. The physical process 

implementing a subset of the solution is used for the validation procedure. The next section is 

about the calibration of digital twins.  
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5. Calibration of digital twins 

An example of a continuous production line that incorporates several sequential units where a 

biological raw material (oil) is transformed into biodiesel is provided in Brasio et al (2018). In 

the reactor, at an appropriate temperature and under the action of a catalyst, the oil is subject 

to transesterication by methanol. In order to improve the reaction, methanol is added in 

stoichiometric excess. The mixture leaving the reactor therefore contains not only the 

products of reaction (ester and glycerol) but also significant non-reacted methanol and traces 

of non or only partially reacted oil (triglycerides, diglycerides, and monoglycerides). To attain 

commercially acceptable biodiesel, there is need to isolate the produced ester to a purity of at 

least 96.5%, which requires to submit the obtained mixture to several separation procedures. 

At first, the separation of the immiscible compounds glycerol and ester is tackled by 

gravitational settling. The mixture is then passed through a heat exchanger to cool it down 

before it enters the decanter unit. In the decanter, the mixture separates into two phases. 

Glycerol (denser) tends to migrate to the down heavy phase while ester (less dense) is prone 

to go to the upper light phase. The light phase, collected after overflowing a baffle, is sent to 

the washer where water is used to wash away the existing methanol, catalyst, and any 

remaining glycerol. Only after having dried up the remnant water, biodiesel is finally 

obtained. All this is included in a digital twin. Its main elements include a reactor, a heat 

exchanger, a decanter, valves, filters, washer, dryer and controllers. All these elements are 

represented using mathematical equations. To use this complex simulator, one needs to 

validate and calibrate it. This applies to the individual parts and the integrated system which 

includes interactions between the various elements. Specifically, one is interested to 

investigate the impact of faults or degradation in one part of the system on its overall 

performance. 

 

The idea of model inadequacy as the difference between a computer code’s output (using the 

‘best’ input settings) and reality is introduced in Kennedy and Ohagan (2001). They list 

problems that concern modelers and model users, the sources of uncertainty that arise when 

tackling such problems, and many aspects of modelling with Gaussian processes. 

 

Computer models generally require two distinct groups of inputs. One group is the (unknown) 

parameter set about which we wish to make inferences; these are the calibration inputs. It is 

assumed that there is a true but unknown parameter set with the property that if the model 

were run with these values, it would reproduce the observations with a given model 

inadequacy term and noise. The other group comprises all the other model inputs whose value 

might change when the calibration set is fixed. 

 

The calibration data consists of n physical observations z = (z1,…, zn) representing 

observations of f(xi), I = 1, …, n, the outputs of a model f(•) at values x = (x1,…, xn). The 

simulation model is subject to error. Calibration can be conducted using frequentists and 

Bayesian methods. The Bayesian paradigm allows the incorporation of a priori knowledge 

(beliefs) about the parameters of any model being used. The code output is computed at a new 

set of parameters. Under the Bayesian view the true value of the code output is a random 

variable, drawn from a distribution that is conditioned by prior knowledge and previous 

computer runs. The computer code is thus viewed as a random function. Assuming 

smoothness, if the code has been run before at a slightly different point in the parameter 

space, one can assert with some confidence that the new run output shouldn't be too different 

from the last run. An emulator of the computer simulator, Simpson et al, 2001, Crary, 2002, 

Bates et al 2006, provides an estimate that is close to the value that code itself would produce. 

However, even a good model may be significantly affected by uncertainty in the input. 
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Quantification of the uncertainty distribution is needed to reduce uncertainty in predictions. 

Moreover, in order to derive good predictions, calibration is necessary by using observational 

data. In calibration you alter the model's parameters to make it fit the data. 

 

A framework combining validation and calibration is proposed in Bayari et al (2007). The 

authors fit an emulator using only simulated data. The Bayesian methodology they propose 

combines validation and calibrations by incorporating the posterior distribution of the tuning 

parameters in the overall assessment of uncertainties. This is important because simply 

replacing a tuning parameter by an optimally “tuned” parameter using least squares hides the 

interaction between bias and tuning and can lead to overly optimistic assessments of validity. 

 

An approach for modularized calibration is developed in Gramcy et al (2015). Such a 

decoupling has computational advantages and therefore applies to large simulations. They 

apply a flexible derivative-free optimization method to pair local approximate Gaussian 

process. Their proposal yields excellent predictions even when the emulator is far from the 

true value. This is attributed to the flexibility of coupled nonparametric regression models. 

The next section discusses the use of digital twins in education processes. 

6. Digital twins in training and educational processes 

Introductory engineering courses in academia combines the study of basic concepts with 

hands-on practice using tasks that resemble problems faced by engineers and technicians in 

their professional lives. Such practice exposes students to the nature and challenges of their 

future profession and fosters their motivation to learn following graduation. Industrial 

robotics laboratories, generally implement three types of learning scenarios setting up a robot 

system, programming different industrial robots and performing advanced robot-handling 

tasks. These laboratories offer learning practice in hands-on, virtual, and remote environments 

(Verner et al, 2019). In hands-on environments, students are present in the laboratory and 

directly control the installed robot systems. In virtual environments, they work with computer 

simulations of robot systems. In remote environments, the students are distant from the 

laboratory and control the robot systems through teleoperation. To perform robot system 

setup, programming, and operation assignments, the student needs immediate and detailed 

visual information from the robot workspace. In the hands-on environment, the student is near 

the robot system, and so all needed information is acquired directly through observation. In 

the remote-control system, visual feedback is transmitted from video cameras via a computer 

screen, and so is incomplete and delayed. In the virtual environment, the student works with a 

graphic simulation of the robot system on the computer screen, under limitations of the given 

software. 

 

Simulators of batch and continuous processes are used both as digital twins and as educational 

infrastructures (Reis and Kenett, 2017). One important example is the Tennessee Eastman 

(TE) process simulatorde. The TE process plant involves five major units: a reactor, a 

condenser, a vapor-liquid separator, a product stripper and a recycle compressor. The plant 

produces two liquid products from four gaseous reactants through a reaction system 

composed of four irreversible and exothermic reactions. It also produces an inert product and 

a by-product purged as vapors from the system through the vapor-liquid separator. Reactants 

flow into a reactor where the reaction takes place. The output from the reactor is fed to a 

 
d https://github.com/camaramm/tennessee-eastman-profBraatz 
e http://depts.washington.edu/control/LARRY/TE/download.html 

 

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fcamaramm%2Ftennessee-eastman-profBraatz&data=04%7C01%7CChristopher.Gotwalt%40jmp.com%7C66040b68302b4886c05d08d871dc3b66%7Cb1c14d5c362545b3a4309552373a0c2f%7C0%7C0%7C637384537993712868%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=%2FE8yql2eQWC9IjtFZrXlpnmSiUWXEkTdYqu5AHE2KD4%3D&reserved=0
http://depts.washington.edu/control/LARRY/TE/download.html
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condenser. Some non-condensable vapors join the liquid products, but the following vapor-

liquid separator again splits the substances into separate flows. Vapor is partially recycled and 

partially purged together with the inert product and the by-product. The stripper separates the 

remaining reactants from the liquid and another reactant is added to the product. The final 

products then exits the process and the remaining reactants are recycled. The TE process has 

12 manipulated variables and 41 measured variables. The combination of mass ratios and 

production rates of the final products define six different operating modes of the process. The 

user can also choose to activate 20 pre-set process disturbances. TE is a complex simulator 

that can be used in advanced courses. 
 

Educational activities, in life-long learning and academic environments, link concepts, 

mathematical tools and applicationsfg. This is especially true in reskilling the workforce to an 

adequate analytic level required by Industry 4.0 implementations. In this context, student 

engagement is an important activity aiming at effective acquisition of skills and competences.  

Flipped class learning, for example, is a pedagogical approach reinforcing the link between 

theory and practice by calling on trainees to play an active role in the learning process. The 

learning is often done by off class individual activities of students supported by on-line 

material. The classroom is a discussion arena where alternative interpretations are discussed. 

This has been used in both academic and adult education programs. Training with robots 

requires to engage students in the learning process, from problem elicitation and definition, to 

the analysis of collected data, follow-up experimentation and drawing of conclusions (Verner 

et al, 2019).   

 

Simulations play a key role in distance learning programs, such as Massive Open Online 

Courses (MOOCs) and on-line education. A hierarchical classification scheme (HCS) of 

educational process simulators reflecting their inherent complexity, and describe training 

situations with integrated, comprehensive and coherent pedagogical solutions is proposed in 

Reis and Kenett, 2017. HCS builds on three dimensions capturing different aspects of 

complexity, namely: 

 

1) Presence of non-linear modelling elements in the simulated models [NL] 

o NL=1: Linear 

o NL=2: Non-Linear 

2) Presence of time-dependent behavior (e.g., dynamics, non-stationarity) [TD] 

o TD=1: Static 

o TD=2: Time-dependent 

3) Size of the simulated system [SI]. 

o SI=1: Small-scale 

o SI=2: Large-scale 

 

These three dimensions describe eight classes of simulators. Class 1 are basic simulators with 

NL=1, TF=1 and SI=1. They represent applications based on the generation of random 

numbers from common probability distributions. The pedagogical goals of Class 1 simulators 

are: (i) demonstrate the existence of variability, (ii) show how randomness represents 

ignorance about the process outcomes and (iii) illustrate consequences of variability and non-

linearity as contributors to systems complexity. Class 5 simulators are non-linear simulators 

(NL=2, TD=1, SI=1). These correspond to controlled continuous processes, with process kept 

 
f https://intelitek.com/ 
g https://phet.colorado.edu 

 

https://intelitek.com/
https://phet.colorado.edu/
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in narrow windows of operation. In these cases, first order Taylor approximation of the 

response surface provides a good description of the system behaviour. However, when the 

system is tested in more extreme conditions, non-linear behaviour may show up. This class of 

simulators is used for teaching quality engineering courses. Class 8 simulators are simulators 

of advanced process optimization, control, monitoring and diagnostics. These are 

characterised by medium/large-scale non-linear dynamics (NL=2, TD=2, SI=2). An example 

of Class 8 simulators is the Tennessee Eastman process simulator mentioned earlier (Capaci et 

al 2019). A list of such simulators is provided in Kenett and Reis, 2017. 

7. Discussion and future developments 

This final section provides a discussion and sketch for further developments related to digital 

twins. We emphasize here three aspects: the general structure of industry 4 manufacturing, the 

role of soft sensors and the potential of prescriptive analytics. 

 

In the fourth industrial revolution, advanced communication, computation, and control 

infrastructures are integrated into cyber-physical systems incorporating a network of multiple 

manufacturing systems. This involves the use of embedded systems, such as sensors and 

programmable logic controllers to achieve an unprecedented level of automation in 

manufacturing. With the extensive use of embedded systems in the manufacturing industry, 

the fourth industrial revolution has significantly improved the throughput, efficiency, and 

product quality in the entire manufacturing industry, while considerably reducing human 

labour (Kenett et al., 2020).  

 

In the Industry 4.0 and Big Data era, there is an increasing interest in the exploitation of the 

huge amounts of industrial data that are being routinely collected and stored. Product quality 

variables tend to be registered less frequently than process data. This is due complex 

measurement protocols and to time and cost to extract process samples. Moreover, the 

laboratories testing for product quality often require expensive equipment and highly trained 

staff. This leads to slower acquisition rates, creating sparse data structures in the plant 

databases, also known as multirate data structures. These data sources are integrated and 

further explored through advanced process analytics methodologies with predictive, 

monitoring and diagnosis solutions (Kenett and Zacks, 2014). To mitigate the effects of long 

delays and low sampling rates for the product quality variables there has been an increase of 

interest to apply process analytics methods for developing inferential models that are able to 

provide real-time estimates of their values. These are known as soft sensors and are part of a 

digital twin platform. As in the example in section 3, to improve the diagnostic tools in 

rotating machines, virtual sensors that measure the Instantaneous Angular Speed (IAS) are 

used. A common approach in diagnostics of rotating machinery is based on vibrations. 

Vibration analysis is an effective method for detecting various faults and malfunctions. The 

various methods of vibration signal processing require knowing the rotational speed of the 

machine in question, since, with rotating parts, events occur at specific angular positions 

rather than at specific times. For this reason, an accurate estimate of the Instantaneous 

Angular Speed (IAS) is important for reliable diagnostics. Inaccurate angular speed, due to 

dynamic phenomena such as unbalance, misalignment or eccentricity, can mask the effects of 

incipient localized faults. In practice direct measurement of the rotational speed is often 

impossible, expensive, or inaccurate. One example is Leclère (2016) who introduced a new 

approach for robust IAS estimation called the “Multi-Order Probabilistic Approach” (MOPA).  

 
Machine learning is naturally integrated in digital twin platforms. Most of the machine 

learning today is supervised learning, where the model learns from labeled examples. Other 
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forms of learning enable the identification of patterns in the data. An example is 

reinforcement learning, where the model learns in an unsupervised way when taking actions 

in a given (simulated) environment. In most cases of reinforcement learning, such conditions 

wouldn’t be possible in the real world. Training models could however be highly time 

consuming. The OpenAI Fiveh neural network took 180 years of effective play time to train 

and still lost to professional players of the game. In the digital twin environment you can 

repeat a scenario or do a test without breaking the system and reinforcement learning agents 

can find novel ways to optimize the system. 

 

Prescriptive analytics provides information about possible situations or scenarios, available 

resources, past performance, and current performance, and suggests a course of action or 

strategy. It can be used to make decisions on any time horizon, from immediate, to long term. 

In the case of a system and subsystem, prescriptive analytics provides focused 

recommendations on what line replaceable unit (LRU) to change and when, in order to ensure 

ongoing operations. 

 

In providing monitoring, diagnostic, prognostic and prescriptive analytic capabilities, digital 

twins play a central role. The digital twin integrates information from empirical models with 

first principle simulation applications. For examples of such hybrid models in biotechnology 

see von Stosch et al, 2017. 

 

As the title implies, our goal in this paper is to provide a wide-angle perspective of digital 

twins, and their role in the fourth industrial revolution. We discuss a range of applications 

with a more in-depth case study of rotating machines. We emphasize that the topics presented 

in this article should be taught in the advanced study programs in the Master of Science in 

Systems Engineering program under the topic of Engineering 4.0. 
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