

Computer Vision Optics

Engage Photonics LTD

14 October 2020

ASSOCIATION OF ENGINEERS, ARCHITECTS AND GRADUATES IN TECHNOLOGICAL SCIENCES IN ISRAEL

Photonics Israel

The Association of Photonics Industries in Israel

Computer Vision World

Computer Vision World

Computer Vision

Acquisition and Processing of Digital Images

Life Sciences Cytometry Production Inspection

Autonomous Vehicles

Agriculture Satellite Imaging

Count cells Analyze cell morphology

Find Defects

Localization and mapping

Growth condition

3

www.enphotonics.com

Basics

Anatomy of a digital camera

Importance of optimizing the digital camera

Making the right choices and intelligently balancing tradeoffs:

- Maximize SNR
- Contrast enhancement
- Seeing (resolving) critical object details
- Maximizing scanning system throughput
- Minimize distortion
- Obtain high color accuracy

Processes

Optical imaging

Optical image formation: 1st order optics and aberrations

Optical image formation

Optical image formation

Optical image formation: Magnification

Optical Aberrations

Real-world lenses

Lens properties

Lens Focusing (extra slide)

Lens focusing is a seemingly simple task, however quantitative and repeatable focusing for production require SW tools

www.enphotonics.com/mtf-calculator/

LiveFocus

Camera focusing SW for computer vision application development and for production line

Suitable for USB UVC, USB non-UVC, and GigE cameras.

Features:

- Repeatable and quantitative camera focusing
- Does not require image sharpness evaluation by technician

Fast

Option: save MTF

Stop Camera

Stop Focus

Typical Camera focusing solutions

The commonly used setup for camera focusing is based on an illuminated target, which is positioned at the designated distance from the camera. The patterns in the target typically consist of fine features, such as Ronchi ruling, Spoke or other targets. Patterns in the industry vary by shapes and sizes, and they are never one-size-fits-all.

Ronchi Spoke, PIMA

USAF 1951

Distortion

Physical lens limitations

Physical lens limitations: diffraction and MTF

Optical to Digital image

Optical Image sensing microlens color filter color filter color filter Photodiode Photodiode Photodiode Pixel Pixel Pixel

www.enphotonics.com

Physical lens limitations: diffraction and MTF

Camera MTF testing free tool

www.enphotonics.com/mtf-calculator/

Structured Illumination 👻 Imaging 👻 About 👻

MTF Calculator [beta]

Instructions

Upload a slant-edge image to obtain an MTF graph.

- Crop and upload only the edge, as shown in examples below.
- Minimal size: 150×150 pix.
- The angle of the edge should be between 3 and 10 degrees to vertical or horizontal
- Must not be distorted, edge must be absolutely straight.
- Use good illumination, get reasonable contrast, no stains or artifacts, low noise.
- Appropriate image size: 50-100 kb.

Select image to upload: *

Browse... No file selected.

UPLOAD IMAGE

Electronic signal generation

Gain factors and noise in signal generation

Signal histogram and HDR

Main types of noise

Туре	Noise	Dominance	
Fixed-pattern	DSNU (offset)	At low signal	Additive offset
Fixed-pattern	PRNU (gain)	At high signal	Gain proportional
Temporal	Dark noise	At low signal	Additive gaussian temporal
Temporal	Shotnoise	At high signal / anytime	Proportional to sqrt(signal)
	Quantization noise	At low signal	
	Fr	Photonics Confidential	

Shot noise

Shot-noise is proportional to square root of signal, SNR is proportional to square root of signal as well.

$$SNR = \frac{N}{\sqrt{N}} = \sqrt{N}.$$

Quantization noise

Noise in image sensors B5. σ^2_{temp} vs signal and the linear approximations B1. Spatial

Color perception and color imaging

Color accuracy

Practical examples

Telecentric imager

Smartphone AF camera

