GD&T-Geometric Dimensioning & Tolerancing

,רונן קומריאן

עובד בקמ"ג בתחום הפיתוח, תכן הנדסי, ובעבר גם בעיבוד שבבי, משנת 1998 . מלמד את נושא ה – GD&T במכללה להנדסה סמי שמעון, קמ"ג סאסא פלסן

<u>השכלה:</u>

תואר ראשון בהנדסת מכונות, מהמכללה להנדסה SCE באר שבע. תואר שני בהנדסת אנרגיה, אוניברסיטת בן גוריון (סיום 2019).

<u>קורסים:</u>

- ASME "Geometric Dimensioning & Tolerancing Fundamentals + Advanced Applications with Stacks and Analysis "- Course (2010)
- **2.** ASME "Dimensioning and Tolerancing Principles for Gages and Fixtures" Course (2012)

<u>הסמכות:</u>

- 1. GDTP Geometric Dimensioning & Tolerancing Professional Senior Level 3355
- 2. GDTP Geometric Dimensioning & Tolerancing Professional Technologist Level 0843

Table of Contents

1) What is GD&T and advantage

2) All Geometric Tolerance

3) design and manufacture component
 * Coordinate dimension VC gd&t
 * measurement Hole methods (cmm, gage)

Example 1 1) GD&T – international Drawing language

international Drawing language, Applied drawings to describe a mechanical parts.

- **Rules:** rule #1, rule #2...
- Settings: Assembly, Part, feature, datum, DRF...
- Tools: dimensions, shape, orientation, location...

2) GD&T - precise language

Geometry dimensions and tolerances is a precise language.

Size Does Not Control Interrelationship between Individual feature

Size Does Not Control Interrelationship between Individual feature

4) GD&T – Advantages

- Functional design
- Design by limits
- Maximum match between
 components.
- The ability to calculate tolerance stuck easily and systematically
- Process repeatability.
- Reduction of product disqualifications
- Shorter production duration.
- Reduce costs.

All Geometric Tolerance (2009)

Example 3

<u>Geometric</u>

12

What is required to design and manufacture this component

Example 3 How to measure a hole diameter

On drawing

- Ø20 ^{+0.1}

Example 3

On drawing

Ø 0.5 (M) A B C

Size diameter?

-______20 ^{+0.1}

How to measure a hole diameter

Cmm **Average** result: 5 measurement points were taken

	Sampling	Diameter
	number	Measurement
	1	20.07
	2	20.09
	3	20.09
	4	20.01
n=	5	20.05
	\overline{x}	
	Average	20.062
	ŝ	
	standard	
	deviation	0.033466401
	D.O.F=n-1	5-1=4

Confidence interval equation

$$p\left(\bar{x} - t_{\frac{\alpha}{2}}\frac{\hat{s}}{\sqrt{n}} < \mu < \bar{x} + t_{\frac{\alpha}{2}}\frac{\hat{s}}{\sqrt{n}}\right) = 1 - \alpha$$

Confidence interv	90%			
α	0.1			
α/2	0.05			
t(α/2)	2.132			
Minimum value	>	μ	>	Maximum value
20.03009115		μ	>	20.09390885

Example 3 – Absolute gage policy - 10%

Example 3 – Absolute gage policy - 10% Accepts Good parts

Copyright © 2016 all rights reserved

Example 3 – Absolute gage policy - 10%

Accepts Good parts

Copyright © 2016 all rights reserved

Example 3 – Absolute gage policy - 10% Reject a Good parts

Copyright © 2016 all rights reserved

THE END

THANK YOU, QUESTIONS?

Copyright © 2017 all rights reserved Ronen ko Merian