

Photonics in the Medical Ecosystem

Engage Photonics LTD

14 Jan 2020

AEAI seminar, Tel Aviv

Intro: ENGAGE PHOTONICS LTD

- Privately held, est. Jan 2019
- 100 sq. m
- Optics and Electronics labs
- 4 employees

Capabilities

- Optical design, optomechanical design, board & layout
- Mathematical models
- Image processing
- R&D and Optical experimentation
- Quick prototyping

3

Core strength

- Advanced optical design of miniaturized systems
- Design and utilization of microstructures and light source chips
- Complete set of design skills
- Design for manufacture (DFM)
- Characterization of optronic devices

Product life cycle

Production volume, unit price, performance, size are achieved through a few design and production cycles: POC, Prototype, EV, PV, DV, each can occur more than once.

A cycle consists of designing <u>components</u> (optical, mechanical, etc) and <u>processes</u> (adhesion, microassembly, alignment, etc).

POC	Prototype	EV	DV	PV	Mass production ramp-up
Stock optics		Some custom optics			Custom optics mostly
Common processes		Some process design			Detailed process design
Mainly manual work		Some tooling and automation			Automated
Main spec is met		Most spec is met			All spec is met
Large dim	ensions				Miniaturized

Product life cycle

The **PHOTONICS** approach

- What's Photonics?
 - Light emission, modulation, shaping, guiding, steering, conversion and detection
 - INTEGRATION
 - Miniaturization
- Why Photonics?
 - Physics limitations
 - Performance and efficiency
 - Size
 - Scalability and Cost

Microstructures by **ENGAGE PHOTONICS**

- Miniaturization
- Dispersive components
- Beam splitting
- Engineered diffuser

Products: structured illumination modules

Pattern dot projectors for 3D sensing

https://enphotonics.com/patternprojectors/

9

Vital signs optical sensor

- Size 25x25x7 → 5x5x2 mm
- Improved performance
- Lower cost in MP
- > 15 optical dies

ENGAGE

OTONICS

Open for joint R&D

Bringing the power of photonics to future medical devices www.enphotonics.com

