Internal Ballistic Simulation, Jericho Pistol

Konstantin Arhiptsov Eitan Maler

WWW.IWI.NET

About IWI

- Israeli Weapon Industries (IWI) a world leader in innovative small arms
- Designs, produces and sells small arms
- The IWI product range and accessories are deployed by the IDF and many other leading security organizations.
- Among our products: Tavor, Negev, X95, Galil, Jericho and the legendary UZI

• Each weapon contains many mechanisms.

- A critical synchronization is necessary for functionality.
- Short time events with very high impacts.
- Multiphysics simulations capabilities using MBD, Radioss and Optistruct.
- An integral stage in the R&D and Engineering process.
- Saving time, money and resources.

WWW.IWI.NE1

Our simulations

RADIOSS – What does it solve?

Fluid/Structure Interactions

- Sloshing & Slamming problems especially in shipbuilding industry
- Wave impacts on offshore structures
- Ditching of aero planes
- Bird strikes, water impacts,

SPH and ALE solutions

RADIOSS – What does it solve?

TARUS on mine Time = 0.0000e+000 ms

Blast & Hydrodynamic Impact

- Explosion mechanism studies
- Blast effects on structures (effect of a mine on a vehicle, ..)
- Meteoritic impacts
- Military systems functioning (shape charges, ...)

WITH HYPERSTUDY YOU CAN

Problem definition

- Performing a complete gun firing simulation.
- Determine gun powder properties.
- Create new workaround for complete Multiphysics simulations.
- Contact and general model behavior.
- Use real testing results to learn HyperStudy.
- When confident in results future research of developed products using FSI method.

WWW.IWI.NET

Problem definition

Mat. calibration

- All Elasto-plastic materials modeled with material LAW36.
- Total of 7 materials was used for the Simulation.
- All materials was simulated and compared to experiment.
- LAW36 Tensile failure model using ε_t, ε_m, ε_F.
- Excellent in terms of stiffness.
- failure model still to be calibrated to reach proper necking in ductile materials.

OV OBSTITE MEM

OV ODM ID MEM

OV ODM ID MEN

	(Real)					
В	B parameter of equation of state (Real)					
R ₁	R_1 parameter of equation of state (Real)					
R ₂	R ₂ parameter of equation of state (Real)					
ω	arnothing parameter of equation of state (Real)					
D	Detonation velocity (Real)					
P _{CJ}	Chapman Jouguet pressure (Real)					
E ₀	Detonation energy per unit volume (Real)					

A parameter of equation of state

Problem definition

JWL calibration

 $P = A\left(1 - \frac{\omega}{R_1 V}\right)e^{-R_1 V} + B\left(1 - \frac{\omega}{R_2 V}\right)e^{-R_2 V} + \frac{\omega E}{V}$

	67th				68th				69ti	69th			70th			
	similar	to 63														
	0	0			0	0			0	0			0	0		
	0.002002	7.4782			0.002002	7.40492			0.002002	7.2042			0.002002	6.72818		
	0.004000	44 4000		Rho	Initial		0.00163	Bho I	Initial		0.00163	Rho_li	าทัลไ	2	0.00163	
A			670.0	A			670.0	A			670.0	A			670.0	
5			440.0	B			440.0	8			440.0	B			448.0	
81			0.8/5	R1			0.875	R1			0.875	81			0.875	
0			0.0041	R2			0.5	R2			0.4	R2			0.3	
D	iga		39	One	ega		0.2641	Omeg	ia.		0.2641	Oniega	•		0.2641	
Po			15000.0	D			29	D			2.9	D			2.9	
ED			2400.0	P_0			15000.0	P_ci			15000.0	P_01			15000.0	
Ea	dd		0.0	E0 E -	u		2400.0	80			2400.0	E out			2400.0	
-	0.020002	78.2906			0.020002	76.5072		E_80	0.020002	72.4031	0.0	C_400	0.020002	66.3057	0.0	
	0.022002	90 4515			0.022002	88 1735			0.022002	82 9068			0.022002	75 5935		
	0.024002	98.972			0.024002	95.4349			0.024002	90.0479			0.024002	84.5522		
	0.026002	101.98			0.026002	97.1049			0.026002	94.5574			0.026002	89.5336		
	0.028002	104.269			0.028002	99.6122			0.028002	101.073			0.028002	96.0301		
	0.030002	102.198			0.030002	100.87			0.030002	102.756			0.030002	98.5617		
	0.032002	101.284			0.032002	102.133			0.032002	102,527			0.032002	99,1068		
	0.034002	101.002			0.034002	105,731			0.034002	103.853			0.034002	100.187		
	0.036002	102,108			0.036002	108.441			0.036002	107.949			0.036002	103.007		
					88002	500										
					10002	500			1000							
					40002	450			Ren							
	12 3 31	30.357			42002	125.04		107	CO WA	24						
					\$4002	400		11		N						
					46002	350	1			1						
			· • •	IBHVG 2	48002	0.50		V								
			-	-65th	50002	300	- 1	1			See.					-BHVG
			1		52002	256.53	1	/								- C Dah
				0001	54002	250				1 1 1				19	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	ootn
-			-	-67th	56002	200	r1				N N					69th
s				68th	00002	0.00	1/					Mar a				70th
					5800Z	150	11	-		-		-	20			
			2.	- Poly. (67	^(h) 50002	1944										
					52002	100						101 10		-		
					54002	50										
1213		2	07													
0,5		0			56002	10										

WWW.IWI.NET

Equation of state

WWW.IWI.NET

ev easilias

Problem definition

Hyperstudy-

٠

- Objective : velocity =-370 [m/sec]
- Constraint : gun powder maximum pressure of 250 [MPa].

Self iteration-

- Velocity =-280 [m/sec]
- Gun powder maximum pressure of 619 [MPa].

	[]+ A	∎+ B	[]+ R1	[]+ R2	t w	∐ + E0	🕼 Response 1	🕼 Response 2
1	190.00000	250.00000	0.0900000	0.5000000	0.2000000	1680.0000	-277.76213	209.32007
2	221.35000	250.00000	0.0900000	0.5000000	0.2000000	1680.0000	-225.14655	194.65614
3	190.00000	275.00000	0.0900000	0.5000000	0.2000000	1680.0000	-282.85111	222.09027
4	190.00000	250.00000	0.1048500	0.5000000	0.2000000	1680.0000	-357.55978	272.97784
5	190.00000	250.00000	0.0900000	0.5825000	0.2000000	1680.0000	-293.64287	209.22499
6	190.00000	250.00000	0.0900000	0.5000000	0.2330000	1680.0000	-253.34409	197.70091
7	190.00000	250.00000	0.0900000	0.5000000	0.2000000	1957.2000	-365.70699	267.65228
8	176.02367	244.40991	0.0961533	0.5750000	0.1700000	1680.6844	-363.73111	255.86688
9	175.36000	243.14688	0.0968790	0.6694223	0.1920813	1680.9086	-381.13316	254.35487
10	190.76226	249.47385	0.0976374	0.6719971	0.1821219	1680.0267	-353.03839	251.23351
11	190.77017	249.12966	0.0968378	0.7505533	0.1774050	1680.0299	-355.51841	237.20837
12	190.80868	248.86379	0.0997516	0.7885713	0.1829999	1680.0321	-376.03282	255.53828
13	190.46060	248.05991	0.0983560	0.9500000	0.1688477	1680.1272	200 52506	222 20427
14	190.52686	248.06477	0.0972028	0.8992631	0.1708913	1680.1181	-372.68421	235.45137
15	190.52222	247.95057	0.0965616	0.9046006	0.1696134	1680.1243	373.73060	236,77994
16	190.53182	248.02716	0.0963152	0.9017760	0.1699531	1680.1191	-366.95678	236.13675

JWL calibration

HyperStudy

WWW.IWI.NET

SK GROUP MEMR

OVER 80 YEARS OF EXPERIENCE AND EXCELLENCE

- No of elements 341576 (75% tetra, 25% Hexa / penta).
- No of nodes 191521.
- No of components 65.
- Type 7 contact 19, mostly for sliding components and SPH components.
- Type 24 contact 74, mostly for initially penetrated components.

- Smallest time step in the model 5.8e-6 [msec]
- Time step is increase by <u>5.2</u>.
- Minimum defined time step 3e-5 msec (ENG_DT_NODA card is used for small mass scaling).
- Total mass added 0.4%.
- Run time 40msec at approx. 40Hrs.

WWW.IWI.NET

🛆 Altair | HyperWorks

- Excellent, and, comparable to reality results.
- HyperStudy knowhow created.
- JWL material created for future projects and developments.
- Material contact and general modeling workaround created.

That's it

Thank you for your time and attention!

eitanm@iwi.net konstantina@iwi.net

References:

- Mechanical properties at high strain-rate of lead core and brass jacket of a NATO 7.62 mm ball bullet L. Peroni1, M. Scapin1, C. Fichera1, , A. Manes2, and M. Giglio2
- GUNSHOT EFFECTS SIMULATION Mário ŠTIAVNICKÝ, Peter LISÝ
- https://www.impetus-afea.com/support/documents/?doc=explosives&page=contents
- https://iwi.net/

