

Improving Sealing Performance by Laser Surface Texturing

Izhak Etsion

Dept. of Mechanical Engineering Technion, Haifa 32000 Israel etsion@tx.technion.ac.il

LST Regular Micro-Surface Structure in the Form of Micro-dimples

A Mechanical Face Seal

Ring on Ring Scheme

Comparison of Theoretical and Experimental Results of LST Mechanical Seal

Clearance (µm)

Friction Torque vs. Face Loading for Textured and Non-textured Seals in Water

Field Test with Water Pump

Carbon Ring - Standard Seal After 400 Hours

WC Ring - Standard Seal After 400 Hours

Field Test with Water Pump

Carbon Ring - LST Seal After 550 Hours

WC Ring - LST Seal After 550 Hours

Schematic of a partial laser surface textured mechanical seal

Partial (on the Right) and Full (on the Left) Face Laser Texturing

Friction Torque vs. Sealed Pressure for Non-textured and Partial Textured Seals

Improved Main Shaft Seal Life in Gas Turbines using Laser Surface Texturing

- GOALS:
 - Develop computer code for hydrodynamic force evaluation
 - Develop Laser Surface Texturing (LST) for mechanical seals
 - Increase Seal Life & Performance

• APPLICATIONS:

- -Gas Turbines (aviation & land based)
- Turbo machinery

Wear Test Rig

Enlarged View of Rotor - Carbon Specimen Interface

Average Torque vs. Time, Comparison of Baseline & LST Rotors at 12,000 rpm

BASELINE & LST ROTORS

ELAPSED TIME (MINUTES)

Case Study: LST Technology Tested at a Petrochemical Refinery

- Gadiv Petrochemical Industries Ltd, one of Israel's largest petrochemical companies, started a field test in 1998 in order to improve the reliability of the mechanical seals at its petrochemical refinery plant.
- Gadiv evaluated the benefits of LST by comparing the performance of identical pumps that pumped liquid hydrocarbons – one was fitted with an LSTtreated seal, and the other with a standard nontextured seal.

Case Study Results

- The LST-treated seal operated for more than 10,000 hours over a 38-month period before it was replaced because of an O-ring failure.
- Over the same time, the untreated seal had to be replaced four times.

Conclusions

- LST is applied to mechanical seals with a great success.
- Both laboratory and field tests show substantial friction reduction and up to threefold increase in seal life.
- This success is attributed to the theoretical modeling of LST, which permits optimization of the LST parameters.

Internal Combustion Engines

- Improved lubrication, speed and power
- Lower fuel consumption
- Reduced exhaust levels and operating temperatures
- Minimized cylinder wear and mechanical losses

Piston Group

Schematic of Full and Partial LST Piston Ring Segments

Reciprocating Test Rig

Full and Partial LST Test Results

Piston ring specimens

Cross sections of cylindrical (a) and barrel shape (b) Cr coated piston rings

Partial LST cylindrical face piston ring

An optical profilometry of a partial LST cylindrical face piston ring

Title: Subregion Note: X offset:37 Y offset:0

A 4-cylinders Ford Transit naturally aspirated 2,500 cc Diesel engine

Engine specific fuel consumption vs. engine speed

Series 1: Barrel, chrome coated, baseline Series 2: Flat, chrome coated, LST Series 3: Flat, no chrome, LST

Summary

A collaboration existed between Technion, and SurTech aiming to improve tribology of various mechanical components by Laser Surface Texturing (LST).

Extensive theoretical, experimental and field test results show the potential of LST in reducing friction and wear in mechanical seals.

Other components such as in engine and transmission components may also benefit from LST.

Collaboration with local industry and partners abroad in implementing LST was very successful.