The effective multilayer coating systems. 05.04.22 **Itshak Rosenthul**, **Proffimat S.R Ltd.** 054-4923047 rosenthul@proffimat.com

Two or more coating components are used in conjunction, creating superior multifunctional

properties.

Duplex coatings for outdoor corrosion protection of steels

"Duplex coatings" –coating systems for corrosion protection of steel by sacrificial coating plus additional barrier protection coating as organic or organosilicate paint systems, powder coatings or topcoats.

The purpose is to provide additional corrosion protection in highly corrosive environments at temperatures up to ~650°C, with other benefits of visibility, camouflage, or when an aesthetic appearance is required, including various color combinations.

ASTM 117 Salt Spray Test, 1

Failure is reached when the area of substrate corrosion exceeds 5% of the total sample area.

Coating Loss, g/sq.m

ASTM 117 Salt Spray Test, 2

Miyakojima sea shore exposure 24 Months

PM-1 45µm

Zn galvanizing 68µm

Zn galv. 112µm

Zn-Al-Mg galv.73µm

Dacro10µm

Zn-Fe plating. No baking

Zn-Fe plating

after baking

SUS304

SUS316

PM-1 -35µm

Zn galv. 77µm

Zn galv. 49µm

Zn-Fe plating after baking

Zn-Al-Mg galv. 49µm

Dacro

Zinc corrosion problem for duplex coatings

Typical corrosion resistance of duplex coatings: competitive Zn-Ni coating as a base for epoxy e-coating after 720 hrs testing in neutral salt spray chamber.

Corrosion Resistance of Duplex Coatings

- Duplex coating: Poly-metal Zn-Al diffusion coating + e-coating. PM-10 thickness is ~15 μm. E-coating thickness is ~15 μm.
- Two coated parts after 1009 hrs testing in neutral salt spray chamber (the most extreme, left, and medium) and of one non-tested part (right).

Category	Corros	ion Rates (<i>r_{corr}) and</i> (Ref	Service Life in Years ISO 1461:2009 and IS	for Hot Dip Galvanized SO 9223:2012)	Coated Steel
Corrosivity	Units	Zinc	55µm mean coating thickness for steel ≥ 1.5 mm to ≤ 3mm (years)	70µm mean coating thickness for steel > 3 mm to ≤ 6 mm (years)	85µm mean coating thickness for steel > 6 mm (years)
C 1	µm/a	$r_{\rm corr} \le 0.1$	> 80	> 80	> 80
C 2	µm/a	$0.1 < r_{\rm corr} \le 0.7$	< 78	> 80	> 80
C 3	µm/a	$0.7 < r_{\rm corr} \le 2.1$	26 to ≤ 78	33 to < 80	40 to > 80
C 4	µm/a	$2.1 < r_{\rm corr} \le 4.2$	13 to ≤ 26	16 to ≤ 33	20 to ≤ 40
C 5	µm/a	$4.2 < r_{\rm corr} \le 8.4$	6.5 to ≤ 13	8.3 to ≤ 16	10 to ≤ 20
CX	µm/a	8.4 < <i>r</i> _{corr} ≤ 25	2.2 to 6.5	2.8 to 8.3	3.4 to ≤ 10

Performance		2-Year Exposure			
Ranking			Grams		
					Steel:Zinc
Zinc	Steel	Location	Zinc	Steel	Loss Ratio
1	1	Norman Wells, N.W.T., Canada	0.07	0.73	10.3
2	2	Phoenix, Ariz.	0.13	2.23	17.0
3	3	Saskatoon, Sask., Canada	0.13	2.77	21.0
4	4	Esquimalt, Vancouver Island, Canada	0.21	6.50	31.0
5	6	Fort Amidor Pier, Panama, C.Z.	0.28	7.10	25.2
6	8	Ottawa, Ontario, Canada	0.49	9.60	19.5
7	22	Miraflores, Panama, C.Z.	0.50	20.9	41.8
8	28	Cape Kennedy, 1/2 mile from Ocean	0.50	42.0	84.0
9	11	State College, Pa.	0.51	11.17	22.0
10	7	Morenci, Mich.	0.53	7.03	18.0
11	15	Middletown, Ohio	0.54	14.00	26.0
12	9	Potter County, Pa.	0.55	10.00	18.3
13	20	Bethlehem, Pa.	0.57	18.3	32.4
14	5	Detroit, Mich.	0.58	7.03	12.2
15	36	Point Reyes, Calif.	0.67	244.0	364.0
16	19	Trail, B.C. Canada	0.70	16.90	24.2
17	14	Durham, N.H.	0.70	13.30	19.0
18	13	Halifax (York Redoubt), N.S.	0.70	12.97	18.5
19	18	South Bend, Pa.	0.78	16.20	20.8
20	27	East Chicago, Ind.	0.79	41.1	52.1
21	29	Brazos River, Texas	0.81	45.4	56.0
22	23	Monroeville, Pa.	0.84	23.8	28.4
23	34	Daytona Beach, Fla.	0.88	144.0	164.0
24	32	Kure Beach, N.C. 800-toot Lot	0.89	71.0	80.0
25	17	Columbus, Ohio	0.95	16.00	16.8
26	12	Montreal, Quebec, Canada	1.05	11.44	10.9
27	16	Pittsburgh, Pa.	1.14	14.90	13.1
28	10	Waterbury, Conn.	1.12	11.00	9.8
29	25	Limon Bay, Panama, C.Z.	1.17	30.3	25.9
30	21	Cleveland, Ohio	1.21	19.0	15.7
31	24	Newark, N.J.	1.63	24.7	15.1
32	33	Cape Kennedy, 60 yds. from Ocean, 30-ft. Elev.	1.77	80.2	45.5
33	35	Cape Kennedy, 60 yds, from Ocean, Ground Level	1.83	215.0	117.0
34	31	Cape Kennedy, 60 yds. from Ocean, 60-ft. Elev.	1.94	64.0	33.0
35	26	Bayonne, N.J.	2.11	37.7	17.9
36	37	Kure Beach, N.C. 80-ft Lot	2.80	260.0	93.0
37	30	Halifax (Federal Building) N.S.	3.27	55.3	17.0
38	38	Galeta Point Beach, Panama, C.7	6.80	336.0	49.4

* Total weight loss for 4* x 6* (10cm x 15cm approx.) test specimens

Orannye Umanan Jan Ameterdar Pottedana Brugge Antwertern Dusse Ben o Ligh Drustles Ligh Brissel 142.11 Arritro 240 Greith Lo-ame Router

8

sperce:

100 -34

25

Marine environment, Israel, Hertzlia

The Synergy of Duplex Systems

Duplex systems provide synergistic effect by virtue of the fact that the durability of the combined sacrificial base coating and top organic coating system is greater than the sum of the separate durability of the sacrificial coating and organic coating layer applied separately onto the steel substrate.

For the duplex system based on hot dip Zinc galvanizing the synergistic effect can be estimated mathematically as follows:

Duplex Life = factor x (zinc life + paint life)

The Synergy Of Duplex Systems. Duplex life Factor

Environment	Synergistic Effect Increase Factor
Industrial and Marine	1,8 to ,2,0
Seawater (immersion)	1,5 to 1,6
Non-aggressive climate	2,0 to 2,7

In an environments as industrial with high humidity or high salinity coastal, ISO 9223 C5 category, where 85µm hot dip galvanizing coating life period is approximately 15 years and paint on its own 10 years, and the factor rate is 1.5, the duplex system would give a service life:

1.5 x (15 years + 10 years) = 37.5 years

Corrosivity Category	Units	Servio Hot Dip Galvanizing r _{corr}	ce life in years for I 85µm mean coating thickness for steel > 6 mm	Duplex Coated Steel Estimated service life of a 2 coat paint system 270 to 300µm (years)	Estimated service life of a Duplex system 355 to 385µm (years)**
00			(years) **		
C 1	µm/a	$r_{\rm corr} \le 0.1$	> 80	15	Not required
C 2	µm/a	$0.1 < r_{\rm corr} \le 0.7$	> 80	15	Not required
C 3	µm/a	$0.7 < r_{\rm corr} \le 2.1$	40 to > 80	12	Not required
C 4	µm/a	$2.1 < r_{\rm corr} \le 4.2$	20 to ≤ 40	10	(20+10) x 1.5 = 45
C 5	µm/a	$4.2 < r_{\rm corr} \le 8.4$	10 to ≤ 20	8	(10 + 8) x 1.5 = 27
СХ	µm/a	8.4 < <i>r</i> _{corr} ≤ 25	3.4 to ≤ 10	6	(3.4 + 6) x 1.5 = 14

ISO 12944-1 Paints and varnishes — Corrosion protection of steel structures by protective paint systems — Part 1 : General Introduction

Durability Category	12944:1998	12944-1:2018
Low (L)	2-5 years	Up to 7 years
Medium (M)	5-15 years	7-15 years
High (H)	More than 15 years	15-25 years
Very high (VH)	N/A	More than 25 years

ISO 12944-2 Paints and varnishes — Corrosion protection of steel structures by protective paint systems — Part 2 : Classification of environments.

Corrosivity category	Examples of typical environments (informative only)		
	Exterior	Interior	
C1 very low	_	Heated buildings with clean atmospheres , e. g. offices, shops, schools , hotels	
C2 low	Atmospheres with low level of pollution: mostly rural areas	Unheated buildings where condensation can occur, e. g. depots, sports halls	
C3 medium	Urban and industrial atmospheres, moderate sulfur dioxide pollution; coastal areas with low salinity	Production rooms with high humidity and some air pollution, e.g. food-processing plants, laundries, breweries, dairies	
C4 high	Indus trial areas and coastal areas with moderate salinity	Chemical plants, swimming pools, coastal ship and boatyards	
C5 very high	Industrial areas with high humidity and aggressive atmosphere and coastal areas with high salinity	Buildings or areas with almost permanent condensation and with high pollution	
C X extreme	Offshore areas with high salinity and industrial areas with extreme humidity and aggressive atmosphere and sub -tropical and tropical atmospheres	Industrial areas with extreme humidity and aggressive atmosphere	
NOTE: ISO 9223.			

Corrosivity	Examples of typical environments (informative only)			
category	Exterior	Interior		
C1 very low		Heated buildings with clean atmospheres , e. g. offices, shops, schools , hotels		
C2 low	Atmospheres with low level of pollution: mostly rural areas	Unheated buildings where condensation can occur, e.g. depots, sports halls		
C3 medium	Urban and industrial atmospheres, moderate sulfur dioxide pollution; coastal areas with low salinity	Production rooms with high humidity and some air pollution, e.g. food- processing plants, laundries, breweries, dairies		
NOTE: ISO 9223.				

Corrosivity	Examples of typical environments (informative only)			
category	Exterior	Interior		
C4 high	Indus trial areas and coastal areas with moderate salinity	Chemical plants, swimming pools, coastal ship and boatyards		
C5 very high	Industrial areas with high humidity and aggressive atmosphere and coastal areas with high salinity	Buildings or areas with almost permanent condensation and with high pollution		
C X extreme	Offshore areas with high salinity and industrial areas with extreme humidity and aggressive atmosphere and sub -tropical and tropical atmospheres	Industrial areas with extreme humidity and aggressive atmosphere		
NOTE: ISO	9223.			

Categories for water and soil

Category	Environment	Examples of environments and structures	
lm1	Fresh water	River installations, hydro - electric power plants	
lm2	Sea or brackish water	Immersed structures without cathodic protection (e .g . harbour areas with structures like sluice gates, locks or jetties)	
lm3	Soil	Buried tanks, steel piles, steel pipes	
Im4 Sea or brackish water		Immersed structures with cathodic protection (e .g. offshore structures)	
NOTE For corrosivity category Im1 and Im3, cathodic protection can be used with a paint system tested accordingly			

ISO 12944-6:2018

Table 1 — Test procedures for paint systems applied to carbon steel, hot dip galvanized steel or steel with thermal-sprayed metallic coating for atmospheric corrosivity categories

		Test regime 1			Test regime 2
Corrosivity category as defined in ISO 12944-2	Durability ranges according to ISO 12944-1	ISO 2812-2 (water immersion) h	ISO 6270-1 (water condensation) h	ISO 9227 (neutral salt spray) h	Annex B (cyclic ageing test) h
	low	- 	48		
C 2	meditim	<u> </u>	48	3 <u>719</u>	
62	high	1.5 8	120	:	
	very high		240	480	
	low		48	120	
CA	medium		120	240	
63	high	- 22 2	240	480	-
	very high	<u></u>	480	720	22
	low	1.5 8	120	240	13 11
24	medium		240	480	-
64	high		480	720	-
	very high	25 8	720	1 4 4 0	1 680
	low	- 	240	480	-
05	medium	<u></u>	480	720	22
La	high		720	1 440	1 680
	very high	. 8	-		2 688

ISO 12944-6:2018

Table 2 — Test procedures for paint systems applied to carbon steel, hot dip galvanized steel or steel with thermal-sprayed metallic coating for immersion categories

Immersion	Durability rang-	ISO 2812-2	ISO 6270-1ª	ISO 9227a		
category as defined in ISO 12944-2	es according to ISO 12944-1	(water immersion) h	(water condensa- tion) h	(neutral salt spray) h		
Jun 1	high	3 000	1 440			
11111	very high	4 000	2 160			
Im 2	high	3 000	<u></u>	1 4 4 0		
Imz	very high	4 000		2 160		
Im 2	high	3 000	_	1 440		
Imp	very high	4 000		2 160		
a Only relevant if systems are partially or temporarily immersed/buried.						

Unique Thin Powder Coatings

- PET Epoxy powder topcoat for high corrosion protection.
- PPT Polyester powder topcoat for medium corrosion protection, UV resistant.
- PEPT Epoxy+polyester duplex topcoat for high corrosion protection, UV resistant.
- **PPAT** Polyamide topcoat for high corrosion protection, UV resistant and wear resistance.
- PSiT Organosilicone topcoat for applications up to 650° C.
- Other powder coatings' materials are possible to apply.

Corrosion resistance duplex coatings for elevated temperature.

Sacrificial diffusion polymetal base coating and barrier organosilicon topcoat.

Corrosion resistance duplex coatings with required friction coefficient.

Thread forming fasteners and other applications.

Many Thanks!

Itshak Rosenthul,

Proffimat S.R Ltd.

054-4923047

rosenthul@proffimat.com