

IKA Laboratories (2006) Ltd.

The effect of stabilizing additions on the intergranular corrosion resistance of ferritic stainless steels

Speaker:	Wayne Gordon
	(M.Sc Materials Science, MBA)

Company: IKA Laboratories

Date: 08 November 2018

Ferritic SS – the good!

- Ferritic stainless steels (FSS) are the cheapest grade of stainless steels.
- FSS have excellent resistance to C-SCC.
- FSS have excellent corrosion resistance in oxidizing conditions. Better than Hastelloy C in boiling 65% nitric acid.
- FSS have moderate tensile properties.
- FSS have excellent drawability and formability.

Ferritic SS – the bad

- FSS is limited in strength
 - Cold work drastically reduces elongation
 - Not heat treatable
- FSS are notch-sensitive, which affects their toughness.
 - Industrial grades: DBTT at room temperature.
 - Zone refined Fe-26Cr: Charpy DBTT at -65 °C.
 - Thin sections: DBTT decreases with section thickness.
- Undesirable strengthening mechanisms
 - Sigma, 475 °C, high T embrittlement, Chi, Laves
- Poor corrosion resistance in reducing conditions

Ferritic SS – the ugly!

- FSS suffer greatly from sensitization effects.
 - BCC has very low solubility for interstitial elements
 - BCC has extremely slow diffusion rates for substitutional elements
 - Cr₂₃C₆ & Cr₂N precipitate on grain boundaries when cooling.
 - Cr-depleted zones adjacent to g.b. precipitates
 - Causes intergranular corrosion
 - Sensitization = Industrial problems
 - Significant decrease in weldability.
 - Need very slow cooling rates
 - (furnace cooling) for Cr to diffuse
 - Quenching sensitizes FSS.

Sensitization – TTS curve: Ferritic SS vs austenitic SS

- FSS need fast cooling rate
- De-sensitized by furnace cooling
- Stabilizing elements help

Ellingham diagrams: solvus T ranking

- Ti = 4C+3,4N ^S
- $Ti = 0,2+4(C+N)^{E}$
- Nb = 7,7C+6,6N ^S
- **Nb** = 10(C+N) ^E
- **Zr** = 7,6C+6,5N ^S
- Ta = 27,5(C+N) E
- V = 4,2C+3,6N [⊤]
- ^S stoichiometric
- ^T theoretical
- E effective

Samples

1. Alloy chemistry

	Cr	С	Ν	Si	S	Р	Others
430	17.1	0.018	0.015	0.52	0.007	0.029	-
430Ti	17.2	0.025	0.015	0.44	0.005	0.018	0.13Ti
430Ti+	17.4	0.020	0.015	0.52	0.006	0.025	0.24Ti
430Nb	17.0	0.017	0.015	0.53	0.005	0.022	0.25Nb
430TiNb	17.2	0.016	0.015	0.54	0.006	0.024	0.12Ti 0.13Nb

2. Conditions

- a) Annealed (unsensitized)
- b) Heat treated (sensitized)
- c) Welded

Potentiodynamic Tests

Potentiodynamic Tests

Potentiodynamic Tests

Intergranular Corrosion (Streicher) Tests

Electrochemical Potentiokinetic Reactivation (EPR) Tests

Hardness Profile Tests

Charpy Impact Tests

- 1. FSS can be made resistant to sensitization by stabilization.
- 2. Stabilization with Ti, Nb, or Ti+Nb is effective for resistance to sensitization.
- 3. Stabilization with Nb reduces weld toughness.

Conclusions

IKA LABORATORIES

- Quality Assurance (ISO 17025- Israel Laboratory Accreditation Authority, "Nadcap" - Aerospace, Boeing, Rolls-Royce)
- 16 scientists, engineers experience in Israel & abroad.
- Workshop, mechanical testing, corrosion testing, metallography, chemical analysis, replicas, NDT, SEM and micro-electronics testing.
- Failure Analysis, Reverse Engineering, Consulting Services.

THANK YOU!

- Wayne Gordon
- Materials Engineer (IKA Laboratories)
- 052 958 4787
- 04 821 1631
- wayne@ikalabs.co.il

W. Gordon, A van Bennekom. (1996). "Review Of Stabilization Of Ferritic Stainless Steels", Materials Science And Technology. Institute Of Materials. London. Vol. 12, No. 2. pg. 126-131.

W. Gordon, A van Bennekom. (1996). "The Effect Of Stabilizing Additions On The Intergranular Corrosion Resistance Of Ferritic Stainless Steels", 13th International Corrosion Conference. Vol. 4. paper 376.

