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1. Abstract  

A viscous flow through a narrow gap between surfaces is free of the inertial effects and 

can be characterized as a creeping flow. Since every physical set-up takes place in the R3 

space, while the mathematical solutions are on two dimensional surfaces, it is required to 

do some adjustments for obtaining the locally equivalent problem without dependence on 

the perpendicular direction. Averaging the velocity along the gap e enables us to consider 

as a 2D problem which is governed by the Poisson equation. This study is related to a 

flow between surfaces, such as two coaxial cylinders (FCC), two co-axial cones (FCN) 

and concentric spheres (FCS), namely a shell. The driving force is supplied by several 

point sources, which creates a pressure field that is investigated and an analytical solution 

is obtained. For the three geometries, particular cases of  truncation ends were studied 

which boundary conditions flux considerations and have been taken into account, where 

an injected flux into a finite volume must summed up to zero.  
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2. Introduction  

This paper presents solutions for some physical problems with different geometries with an 

injected flux inside the gap between two surfaces for each case. Such flow is encountered in the 

process industry, in various of lubrication or heat transfer systems, where through the geometric 

device, there are injected fluxes. The cold fluid is streamed inside the core. Furthermore, it can 

be encountered in systems that are based on diffusion of gas through membrane inside a liquid 

that flows in a gap between two membranes, as in the physiologic area, where there is a blood 

flow around the alveoli. The solution for the flow between two Concentric Spheres (FCS) is 

presented by a new available solution that was recently proposed by Eyal and Goldstein, 2018. 

They found the fundamental solution for the Laplace operator in Sd by using the solution in 

Euclidean space as an intermediate stage for obtaining a solution in the desired surface. In this 

study we wish to utilize this solution by substituting D = 3 and the solution considers the flow on 

a sphere at S2, as a particular case, in order to solve the Poisson Equation. Bogomolov, 1977 

obtained the solution for the FCS problem, either, based on the Weiss' theorem at R3, where the 

flow is created by distributed vortices, sinks and sources, but without reference to the pressure 

distribution. He introduced the flow equation in a narrow gap with similar results as in the Helle 

Shaw problem. A solution of a non linear of the N-S equation was obtained for flow inside rotating 

concentric spheres, with a single source. Analytical solutions for the flow between two co-axial 

cylinders (FCC flow) and two co-axial cones (FCN flow), were derived in this paper after 

considering the geometric shape and the characteristic periodic properties of their boundary 
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conditions. Noting that, for an infinite cylinder, the solution reveals an interesting phenomena, 

such as Saddle-Points that exist for some critical values of the potential. The physical significance 

for this is for cases where detachment of the Equi-Potential contours occurs (bifurcation of level 

line).  

FCC Flow: Equi-Potential Contour Lines in two Co-axial Cylinders 

This section demonstrates one of the six different configurations that are studied in this research 

(e.g., an infinite cylinder, open-open truncated, etc.,). 

Fig.1 demonstrates the Equi-Pressure and streamlines of the field flow for a semi-infinite one 

sided open cylinder affected by a source that is located at ϕsource = 0; Zsource and its image at ϕimage 

= 0; Zimage = -Zsource. Fig.1a shows that the Equi-Pressure line, as predicted, at the truncated open 

end encircles the cylinder which implies that the velocity is axial, i.e. directed parallel to Z and 

flows out from the cylinder. As long as the distance Z increases the density of the Equi-Pressure 

line decreases implying for a decreased velocity as well as the pressure. As can be seen, the 

direction of the Equi-Pressure line is parallel to Z at the point B and the direction of the velocity 

is  −∅̂, which is the angle that separate for the forward/backward ow direction. An explanation 

for the flow direction is presented in Fig.1b, where stream lines are shown at a sliced cylinder. As 

explained above, for a net zero of sources (the source is superimposed with its image), above 

the sources, the net flux is zero, result in a forward ow as well as backward ow. Fig.1c 

demonstrates the direction of the flow field  𝑣  far away from the source as function of ϕ. At point 

A for ϕ = 0, the fluid is characterized with a forward flow and propagates along Z. For  0 < ∅̂ <
𝜋

2
, the velocity changes gradually its direction from The 𝑍̂ direction to ∅̂ . Increasing more ϕ up 

to _ (point C, the lower surface of the cylinder), a backward flow is observed for keeping the net 

zero flux over Z = const. The backward ow is disappeared and at point B the flow is directed to 

−∅̂ and increasing ϕ the fluid climbs up to the top surface and vz increases either. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Asymptotic behaviour of the ow on a semi-infinite open cylinder affected by one 

source: (a) Equi-pressure contours and (b) Streamlines of the field ow; (c)The angle of the 

velocity vector with respect to ∅̂  
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The above equation presents the pressure distribution on such flow, where there are the 

contribution of the source and its image for obeying the boundary condition at the open end. 

FCS Flow: Flow Field on Sphere 

The solutions for the six cases that are shown in Fig.2 and demonstrates the all possibilities for 

the flows distribution as following: 

Cases a,c and d (full sphere, truncated closed cap and doubly closed truncated accordingly) are 

characterized as a finite surface, which binding a net zero flux (achieving with sources and sinks 

with the same magnitude). Cases b is shown in Fig.2b, e and f are open truncated and the fluid 

flows out from the surface and consequently to that, there is no need for a net zero sources in this 

domain. Fig.2b; e; f demonstrates the Equi-Pressure that at the open end, an Equi-Pressure line 

surrounds it, which physically means that the fluid flows out to a constant prescribed pressure. 

Actually, it can be solved easily analytically by locating images at the poles. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Pressure distribution of FCS ow and its special cases for embedded source/sink: (a) A 

source and a sink placed on a sphere (b) An open cap (one sided truncated sphere): the liquid 

emanated from the source flows out freely through the boundary.(c) A closed cap: a source and 

a sink are embedded inside ; (d) Two sided truncated closed sphere affected by a source and a 

sink. (e) Two sided truncated sphere, one is open and the other is closed affected by one source. 

(f ) Two sided truncated sphere, both sides are open affected one source. 
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Noting that, similarly for the both geometries FCC and FCS, equations were explored for the flow 

between co-axial cones either, but will not be presented in this abstract. 
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