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1. Abstract 

State sensing for dynamic running typically requires a combination of accurate and high-

bandwidth sensors. In this paper we introduce a model-based estimation method that only requires 

a contact sensor to implement. We utilize relation between the stride phases durations and the 

state of the robot. We evaluate our estimator in simulation with typical modeling and measuring 

errors. Finally, we perform a test-case analysis with a classic control scheme to evaluate how the 

proposed estimator handles an uneven terrain. The results indicate our proposed estimator can be 

used as a practical tool for state estimation for SLIP-like running robots. 
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2. Introduction  

Legged locomotion has unmatched abilities to traverse unstructured terrain compared with 
wheeled systems [1]. A popular model for dynamic legged locomotion is the Spring Loaded 
Inverted Pendulum (SLIP) model. Sensing state for SLIP-like robots requires using a combination 
of sensors such as accelerometers and encoders. Sensing either of the state variables pose 
significant technical difficulties, especially with running gaits, where the stance phase is typically 
short and inertial measurements are required. Most work related to control strategies for the SLIP 
model for running do not explicitly discuss the state estimation problem. Often, researchers 
assume full state knowledge in analysis and simulation, and run into significant difficulties in 
experiments.  

3. Modeling and methodology 

The SLIP model, first introduced by Blickhan in 1989 [2], describes the dynamics of legged 
running. The model consists of a point mass attached to a springy massless leg, as depicted in 
 In the model a stride has two phases: flight phase, in which the leg is .שגיאה! מקור ההפניה לא נמצא.
not in contact with ground and the body follows a ballistic trajectory, and a stance phase in which 
the leg is in contact with the ground and the system behaves as a springy inverted pendulum To 
generalize our discussion, we introduce the non-dimensional SLIP model, similar to [3], [4]. For 
the non-dimensional SLIP, we define the non-dimensional state variables: 𝜁 = 𝜁/𝜁𝑓, �̃� = 𝜑, �̃� =

𝑥/𝜁𝑓, �̃� = 𝑦/𝜁𝑓, and �̃� = 𝑡√𝜁𝑓/𝑔. Substituting the non-dimensional state variables into the stance 

equation, we arrive at the non-dimensional state equation 

[
𝜁̈

�̈̃�
] = [

−𝛽(𝜁 − 1) − 𝑠𝑖𝑛(�̃�) + 𝜁�̇̃�2 − 𝑐𝜁𝜁̇

−2𝜁̇�̇̃� − 𝑐𝑜𝑠(�̃�) − 𝑐𝜑�̇̃�
], (1) 

where 𝛽 = 𝑘𝜁𝑓/𝑚𝑔. Similarly, the non-dimensional flight dynamics simplify to  
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[
�̃̈�
�̃̈�

] = [
0

−1
]. (2) 

The model parameters and state variables are defined in .שגיאה! מקור ההפניה לא נמצא. Other than 
the two damping coefficients, equation (1) has only one parameter, 𝛽, defining the stance 
dynamics, and the flight phase (2) has no free parameters. The damped SLIP model describes a 
damped, non-conservative, system. The damping occurs with each stance phase, it is modeled as 
viscous damping. To modulate the system’s energy, we compensate for dissipation of energy by 
preloading the springy leg during each flight phase which is instantaneously released at leg touch-
down.   

Similar to Altendorfer, Koditschek, and Holmes, we can differentiate between two state 
sensing types: 1) Body frame sensing, i.e., sensing the internal state of the robot. 2) Inertial state 
sensing, that is, measuring the state of the robot’s inertial frame. Depending on sensors quality 
and performance, they are often expensive, and usually one type of sensor is not enough for full 
state estimation. In general, body frame sensing is easier to accomplish than inertial sensing, but 
the latter is necessary for running and hopping gaits [5]. 

To estimate the state of the system we numerically evaluated the durations of flight and stance 
phases for many initial states and different control inputs, C(𝜑, 𝜁), leg angle and length. For a 
cross-section of the parameter space where 𝜑 𝑎𝑛𝑑 𝜁 are set, 𝐶(𝜑, 𝜁) = 𝑐𝑜𝑛𝑠𝑡, the relation between 
�̅� = {�̇�, 𝑦} space and �̅� = {𝑇𝑓 , 𝑇𝑠} space is injective, meaning that by knowing the mapping function 

and �̅� we can calculate the state �̅�. It is easy to measure �̅� using a clock and a contact sensor at 
the tip of the leg. When the system is at stance phase the leg touches the ground and the contact 
sensor is engaged. When the leg lifts off from the ground, and the system enters flight phase, the 
sensor is disengaged. 

We can utilize the injective relation between �̅� and �̅� to find the state of the system by 
numerically solving the inverse dynamics for �̅�. However, to use the estimator in real-time we 
need to accelerate the estimation process. For real-time performance we favor mapping the 
relation between �̅� and �̅�. We based our mapping on a neural network function (𝑓𝑁𝑁) trained with 
approximately 20,000 randomly generated initial states. Once trained, the estimator’s inputs are 
𝑇𝑓 , 𝑇𝑠, 𝜑, 𝜁, and the corresponding output is the system’s state, �̅� = {�̇�, 𝑦, �̇�}, at the apex of the stride 

(�̇� = 0).  

4.  Simulation results 

To evaluate the estimation error, we first discretized the state space. For each discrete state we 
found the dead-beat control action, 𝐶𝐷𝐵(𝜑, 𝜁), that will bring the robot to the starting state after 
the stride, �̅�𝑖 = 𝑓(�̅�𝑖−1, 𝐶𝐷𝐵). We evaluated the non-dimensional estimation errors for state 
variables �̃̇� and �̃� at each discrete state, as depicted in  Figure 2-a.שגיאה! מקור ההפניה לא נמצא. Finally, 
we calculated the mean estimation error and the standard deviation over the entire state space. 
The estimation error for both �̇� and 𝑦 is below 0.1 for most of the state space, and the error is 

mostly invariant to the state itself. Figure 1. The Spring Loaded Inverted Pendulum model with state variables and model parameters. 
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Modeling is never perfect, an estimator sensitive to modeling errors will perform poorly. In 
our case, a modeling error is the difference, Δβ, between the estimator’s model and the exact 
model. The value of Δβ represents our ability to accurately measure the system’s parameters.  

To evaluate the estimator’s sensitivity to modeling errors, we chose an arbitrary point in state 

space, �̃̇� = 1.6 �̃�=1.3. We evaluated the estimation error for the system with different β values 
ranging from 10 to 50, (typical values for a human runner) and for different Δβ values ranging 
from 0 to about 6. The results of the sensitivity analysis are plotted in Figure 2-b שגיאה! מקור ההפניה

 Note that the estimation of �̃̇� is more sensitive than that of �̃�. We hypothesize that the .לא נמצא.
difference in sensitivities is due to the indifference of flight phase dynamics to modeling errors.  

As for modeling errors, measuring errors are also unavoidable. In our case, a measurement 
error is a deviation of the measured duration of a phase (𝑇𝑓 and/or 𝑇𝑠), from the actual duration. 

A phase duration measurement error, ∆�̃�, is comprised of a random noise and a constant bias. The 
random noise is caused by the mechanical and electrical properties of the sensor, while the bias 
originates from installation and tuning of the sensor. Typically, for decent quality sensors the 
error due to bias is dominant over the random noise. 

To evaluate the estimator sensitivity to measuring errors we introduced a bias to the time 

measurement inputs of the estimator. As before, we chose the arbitrary test point, �̃̇� = 1.6 �̃�=1.3 
as a test case for analysis. The bias is in the non-dimensional time �̃�, and ranges from 0 to 0.06. 

Results of the measuring sensitivity are plotted in Figure 2-c. Again, the sensitivity of �̃̇� and �̃� 

estimates act differently, for large values of β, �̃̇� estimation is quite sensitive, while �̃� estimate in 
the range tested, is almost invariant to measuring errors.   

To test and evaluate the usefulness of the proposed estimator, we simulated running using the 
non-conservative model. We designed a simple feedback “test controller”. This test controller is 
a variation of the well-known Raibert’s controller [6]. Our controller decouples regulation of 

energy and velocities ratio, 𝐸𝑖 = 1/2𝑚�̇�𝑖
2 + 𝑚𝑔𝑦𝑖 and 𝑅𝑖 = 𝑦𝑖/�̇�𝑖, respectively. Both the 

desired energy 𝐸𝑑, and the desired velocities ratio 𝑅𝑑,  are calculated from the desired set-point 
�̇�𝑑 and 𝑦𝑑 at apex. This test controller is used to validate and demonstrate the usefulness of our 
estimator, it is therefore purposely standard and not optimized in anyway. 

To test the steady-state performance, we first calculated the BoA of the test controller with 
full state knowledge to serve as a benchmark. The results, depicted in Figure 3-a, show a 9.4% 
reduction in BoA area when using our proposed estimator. The reduction is restricted to the 
circumference of the BoA, which is both expected and desirable.  

To examine the transient performance, we calculated the progression of an arbitrary trajectory, 
shown in Figure 3-b, once with full state knowledge and again with our proposed state estimator. 
The trajectory of the system with the estimator roughly followed the trajectory of the system with 
full state knowledge, with no significant advantage to the full state knowledge. The error remained 
bounded and eventually constant as the system converged. 

  

Figure 2. a) Non-dimensional estimation error. b) Modeling sensitivity c) Time measuring sensitivity. 

a b c 
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Figure 3. a) Basin of Attraction of the chosen controller. The black region depicts the BoA with our proposed state 

estimator. The enlarged region that also includes the gray BoA is with full state knowledge. The green circle represents 

the desired set point. The blue ‘*’ represents the fixed-point of the system with our state estimator, and the red ‘x’  

represents the fixed-point of the system with full state knowledge. B) Convergence of apex state with full state knowledge 

(o) and estimated state (□). The red, �̇�, represents the horizontal velocity at the apex, and the blue, 𝑦, represents the 

apex height. The dashed lines indicate desired values. 

 

I. Conclusions 

In this paper we presented a simple inertial state estimation method requiring only a single 
contact sensor to implement. We evaluated the performance of our estimator with simulated 
modeling and measuring errors. We gave a generalization enabling robot designers to evaluate 
the necessary modeling and sensing accuracy for their design if they wish to deploy the proposed 
state estimator to their robot. The results indicate adequate and practical performance of the 
estimation method, even under significant terrain height perturbations.  

In this work, we did not examine the influence of stance control on the estimation. It is worth 
perusing in future work since it is a common control strategy. Of course, testing on real robots is 
also beneficial. We also believe that replacing the Neural-Network estimator with a simplified 
model can also improve the performance. Finally, we note that researches that already work with 
their own robot and sensors can, with relative ease, add our estimator to their existing system to 
improve performance. 
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