

LoRaWAN-Based Energy-Efficient Surveillance for Intelligent Transportation Systems

July 2018

Agenda

- Introduction
- Low Power WAN (LPWAN) Technologies
- LoRa and LoRaWAN
- LoRaWAN PoC
- Moving Forward

כמה מילים עלי....

Telco Systems עד 2015 - מנהל התכנה בחברת •

• כיום – מהנדס מעבדת רשתות תקשורת בפקולטה למדעי המחשב בטכניון

מעבדת רשתות תקשורת LCCN

Laboratory of Computer Communications & Networking

צוות המעבדה

•פרופ' ראובן כהן – ראש מעבדה ומנחה אקדמי •פרופ' דגו כז – בענו מעבדה ומנחה אקדמי

•פרופ' דני רז – ראש מעבדה ומנחה אקדמי

איציק אשכנזי – מהנדס המעבדה ומנחה פרויקטים •

תחומי הפעילות במעבדה

מחקר

ביצוע

?המחקר במעבדה

- אלגוריתמים פורצי דרך לשיפור ביצועי הרשתות •
- TCP Cubic vs BBR, QUIC : ניתוח ביצועי פרוטוקולים •
- טכנולוגיות העתיד בתחום הרשתות: SDN, NFV, P4, IoT

מה מבצעים במעבדה?

פרויקטים עם חברות מובילות מהתעשייה

- פרויקטים של מחקר והיתכנות עם חברות תקשורת מהמובילות בארץ
 ובעולם
 - → החברות מציעות פרויקטים במסגרת המעבדה
 - ענציגים מהחברה משתתפים בהנחיית הפרויקטים ✓

פרויקטים עם גופי תקינה ומאגדים

- פרויקטים עם גופי תקינה מובילים שמגדירים את הרשת העתידית
- משתתפים במאגד אקדמיה-תעשייה לחקירת תחום רשתות מתוכנתות
 - שת"פ מחקרי ב NATO

פרויקטים של קוד פתוח

• משתתפים בפרויקטי קוד פתוח (Open Source) ותורמים לקהיליית המפתחים

Low Power WAN (LPWAN)

- Group of wireless telecommunication WAN Technologies
- Basic Technology Characteristics:
 - Inter-connect battery-powered devices over long ranges
 - The devices must operate
 - At low power
 - With low bit rate
 - Data rate: 0.3 kbit/s to 200 kbit/s per Frequency Channel
 - Uses Licensed or un-Licensed frequencies
 - Runs proprietary or open standard protocols

Low Power WAN (LPWAN) Technologies

- Sigfox
- LoRaWAN
- NB-IOT (Narrowband IOT)
- LTE-M

Low Power WAN (LPWAN) Technologies

What's the Target of these technologies?

Mobile network operators will adopt their technology for IoT deployments over both city and nationwide LPWANs

- Narrowband (or ultra-narrowband) technology
- uses a standard radio transmission method called Binary Phase-Shift Keying (BPSK)
- Requires an inexpensive endpoint radio, but expensive HW at the Gateway
- Uplink good, Downlink -Limited
- Good for Europe and not for US
- Business model royalties from network operator resales
- Has presence in more than 36 countries (end 2017)

- Spread-Spectrum technology
- Wide band (125Khz or more)
- Based on frequency-modulated chirp
- Looks at a wider amount of spectrum than SigFox
- Can get more Interference
- The larger receiver bandwidth is mitigated by the coding gains

LoRa Business Model

- More open than SigFox
- Anyone can join the LoRa Alliance

- LoRa Gateway spec is open
- Both the Endpoint and the Gateway are relatively inexpensive
- Currently Semtech is the only company that does the LoRa radio

- MAC Protocol
- LoRaWAN is an open standard developed by committee.
- Network management spec is open

LoRaWAN Technical Spec

- ISM Band: 868MHz 900MHz (EU), 902MHz 928MHz (US)
- Ranges: 5 km (Urban) 15 km (Rural) *
- Security: Authentication and Encryption AES-128
- Data Rates: 0.3Kbps 50Kbps

* Range record – 340Km!!

LoRaWAN Device Classes

- Class A devices have lowest power consumption, by opening two short receive windows after transmission.
- Class B devices extend Class A by adding slotted communication.
- Class C devices extend Class A by keeping the receive windows open unless they are transmitting.

LoRaWAN Network

LoRaWAN PoC

Done By:

Saar Eliad, Guy Shwigman

LoRaWAN Sensor

• HW: STM Nucleo board with Semtech sx1272 LoRa transceiver

SW: open-source LoRaWAN end node implementations called

Lora-Mac (from: Semtech)

- Class A support
 - Optimized the RX parameters (Delay, window)

LoRaWAN Gateway

- HW: Raspberry Pi-3 with Semtech sx1272 LoRa transceiver
- Single Channel GW
- SW:
 - Open source single channel gateway from

• Modified it to be LoRaWAN compatible.

LoRaWAN Server

LoRa Server Organizations Users Network servers admin - Q

mic: "7c43cb98"

• Used the ope

bitrate: 0

codeRate: "4/5"

Live LoRaWAN frame logs connected

LoRaWAN Network Controller

- Controls the network with LoRaWAN MAC commands.
- The server updates the controller on every RX.
- The controller holds databases of all the sensors and decides which mac commands to schedule in the server.
- Implemented:
 - Load balancing for single channel gateways.
 - Track sensor battery status.
 - Sensor Duty-Cycle

LoRaWAN PoC Achievements

- Single channel gateway
- Gateway statistics
- OTTA (Over The Air Activation) vs ABP (Activation by Personalization)
- Demo duty cycle functionality in sensor
- Optimized RX parameters with the smallest receive windows possible
- Demo Proprietary mac commands
- Demo GW Load Balancing

Moving Forward...

LoRaWAN GW on Drones

Firmware over-the-air

- Enable Sensor Firmware upgrade for:
 - Security patches
 - New feature
 - Bug fix

LoRaWAN Integration

 Integrate LoRa Server with GCP (Google Cloud Platform) and Kubernetes

 Analyze needed LoRaWAN GW modifications— to integrate it into 4G/5G Network

Take Away

- LPWANs are gaining momentum
- LoRaWAN openness can help to adopt it to ITS

